K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2016

Ta có : \(a+b+c=0\Leftrightarrow a+b=-c\Leftrightarrow\left(a+b\right)^3=-c^3\Leftrightarrow a^3+b^3+3ab\left(a+b\right)+c^3=0\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=-3ab.-c=3abc\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

12 tháng 7 2016
  1. Cho \(a^3+b^3+c^3=3abc\Rightarrow a+b+c=0\)

Ta có : \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+3ab\left(a+b\right)+b^3+c^3-3ab\left(a+b\right)=3abc\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Vậy \(a^3+b^3+c^3=3abc\Rightarrow a+b+c=0\)(1)

           2. Cho \(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\)

Xét \(a^3+b^3+c^3-3abc\)

\(\Leftrightarrow a^3+3ab\left(a+b\right)+b^3+c^3-3ab\left(a+b\right)-3abc\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

mà \(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Vậy \(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\)(2)

Từ (1)(2)\(\Rightarrow a^3+b^3+c^3=3abc\Leftrightarrow a+b+c=0\)(ĐPCM)

12 tháng 7 2016

Ta sẽ chứng minh \(a^3+b^3+c^3-3abc=0\Leftrightarrow a+b+c=0\)

Phân tích thành nhân tử :  \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ac\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

Vì a + b + c = 0 nên \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\) hay \(a^3+b^3+c^3-3abc=0\Leftrightarrow a^3+b^3+c^3=3abc\)

 

 

12 tháng 7 2016

Ta có : \(a+b+c=0\Leftrightarrow a+b=-c\Leftrightarrow\left(a+b\right)^3=-c^3\Leftrightarrow a^3+b^3+3ab\left(a+b\right)+c^3=0\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=-3ab.-c=3abc\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

28 tháng 10 2018

1. \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left[\left(abc\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2+c^2-ac-bc\right)-3ab\left(a+b+c\right)\)

\(\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc+2ab-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

2. \(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

3.Còn có a + b + c = 0 nữa mà bn.

\(a^3+b^3+c^3=3abc\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{matrix}\right.\)

+ \(a^2+b^2+c^2-ab-bc-ac=0\)

\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\ \left(c-a\right)^2=0\end{matrix}\right.\)

\(\Rightarrow a=b=c\)

28 tháng 10 2018

làm đúng mà ko hiểu

6 tháng 2 2020

Hoặc bác muốn làm kiểu như này nhưng ko cần đặt cũng đc :V t đặt nhìn cho đỡ rối 

phải trừ 3ab(a+b) chứ nhỉ ???

7 tháng 10 2019

\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)

Xét \(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

\(\Leftrightarrow a=b=c\)

\(\RightarrowĐPCM\)

7 tháng 10 2019

Đặt \(\left(b+c-a;c+a-b;a+b-c\right)\rightarrow\left(x,y,z\right)\)

\(\Rightarrow x+y+z=a+b+c\)

Ta có:\(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(\left(x+y\right)^3-3\left(x+y\right)z\left(x+y+z\right)+z^3-x^3-y^3-z^3\)

\(=x^3+3xy\left(x+y\right)+y^3-3\left(x+y\right)z\left(x+y+z\right)+z^3-x^3-y^3-z^3\)

\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

\(=3\cdot2a\cdot2b\cdot2c=24abc\)

29 tháng 9 2018

a3+b3+c33abca3+b3+c3−3abc
=a3+3ab(a+b)+b3+c33abc3ab(a+b)=a3+3ab(a+b)+b3+c3−3abc−3ab(a+b)
=(a+b)3+c33ab(a+b+c)=(a+b)3+c3−3ab(a+b+c)
=(a+b+c)(a2+2ab+b2abac+c2)3ab(a+b+c)=(a+b+c)(a2+2ab+b2−ab−ac+c2)−3ab(a+b+c)
=(a+b+c)(a2+b2+c2abbcca)=(a+b+c)(a2+b2+c2−ab−bc−ca)

29 tháng 9 2018

mà a+b+c=0

=> a3+b3+c3-3abc=0

5 tháng 11 2017

Ta có:

\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)

\(=a^3+b^3+3a^2b+3ab^2\)

\(=a^3+b^3+3ab\left(a+b\right)\)

\(\Rightarrow a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)

Thay vào \(a^3+b^3+c^3=0\), ta được:

\(VT=a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3\)

\(a+b+c=0\)

\(\Rightarrow a+b=-c\)

\(\Leftrightarrow a^3+b^3+c^3=\left(-c\right)^{^3}-3ab\left(-c\right)+c^3\)

\(\Leftrightarrow a^3+b^3+c^3=\left(-c\right)^3+c^3+3abc\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

\(\RightarrowĐPCM\).

5 tháng 11 2017

Có a+b+c=0

=> a+b=-c

=> (a+b)3=-c3

=> a3+b3+3ab(a+b)=-c3

=> a3+b3+3ab(-c)=-c3

=> a3+b3-3abc=-c3

=> a3+b3+c3=3abc

24 tháng 7 2017

Ta có: \(VT=a^3+b^3+c^3\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b\right)-3abc+3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)+3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc-3ab\right)+3abc\)

\(=3abc=VP\) ( do a + b + c = 0 )

\(\Rightarrowđpcm\)

31 tháng 7 2018

bạn ơi có thiếu +3 hay j ko

31 tháng 7 2018

Hỏi đáp Toán

NV
31 tháng 8 2020

\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)