\(\sqrt{p\left(p-a\right)\left(p-b\right)\left...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2024

a = 60cm

p = 160/2 = 80cm

p = \(\dfrac{a+b+c}{2}\) (1) => \(\dfrac{2p-a}{2}\) = \(\dfrac{b+c}{2}\)

Vì a, p là 1 hằng số nên để S đạt GTLN <=> (p-b) và (p-c) đạt GTLN

Áp dụng bđt Cosin, ta có:

\(\sqrt{\left(p-b\right)\left(p-c\right)}\) <= \(\dfrac{p-b+p-c}{2}\) = \(\dfrac{2p-b-c}{2}\)

=> \(\dfrac{S}{\sqrt{p\left(p-a\right)}}\) <= \(p-\dfrac{b+c}{2}\) = \(p-\dfrac{2p-a}{2}\) = \(\dfrac{a}{2}\)

=> 2S <= \(a\sqrt{p\left(p-a\right)}\) = \(60\sqrt{80.\left(80-60\right)}\) = 2400

=> S <= 1200 (\(cm^2\))

Dấu "=" xảy ra

<=> \(p-b\) = \(p-c\)

<=> b = c

Thay b = c vào (1), ta được:

p = \(\dfrac{a+2b}{2}\) => 80 = \(\dfrac{60+2b}{2}\) => b = c = 50 (cm)

=> đpcm

20 tháng 6 2016

bạn ơi giúp mình với C/M: (ax^2 - bx^2)^4 + (2ab+bx^2)^4 + (2ab+a^2)^4 = 2(a^2+ab+b^2)

30 tháng 5 2017

Theo đề bài thì ta có:

\(ah_a=bh_b=ch_c=2\)

Ta có:

\(\left(a^2+b^2+c^2\right)\left(h_a^2+h_b^2+h_c^2\right)\ge\left(ah_a+bh_b+ch_c\right)^2\)

\(=\left(2+2+2\right)^2=36\)

Dấu = xảy ra khi \(\hept{\begin{cases}a=b=c=\frac{2}{\sqrt[4]{3}}\\h_a=h_b=h_c=\sqrt[4]{3}\end{cases}}\) 

Bài 1: Cho tam giác ABC vuông tại A, đường cao AH, có cạnh BC dài \(\sqrt{11}cm\) và \(\sqrt{7}.CH=\sqrt{5}.BH\)Tính gần đúng chu vi tam giác ABC.Bài 2: Một mảnh bìa có dạng tam giác cân ABC, với AB = AC = 25cm và BC = 14cm. Làm thế nào để cắt từ mảnh bìa đó ra thành hình chữ nhật MNPQ có diện tích bằng \(\dfrac{1}{17}\) diện tích tam giác ABC. Trong đó M, N thuộc cạnh BC còn P, Q tương ứng thuộc các cạnh...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A, đường cao AH, có cạnh BC dài \(\sqrt{11}cm\) và \(\sqrt{7}.CH=\sqrt{5}.BH\)Tính gần đúng chu vi tam giác ABC.

Bài 2: Một mảnh bìa có dạng tam giác cân ABC, với AB = AC = 25cm và BC = 14cm. Làm thế nào để cắt từ mảnh bìa đó ra thành hình chữ nhật MNPQ có diện tích bằng \(\dfrac{1}{17}\) diện tích tam giác ABC. Trong đó M, N thuộc cạnh BC còn P, Q tương ứng thuộc các cạnh AC, AB.

Bài 3: Cho \(B=31+\dfrac{27}{15+\dfrac{7}{2008}}\) Tìm dãy số  \(b_0,b_1,b_2,...,b_n\) biết \(B=b_o+\dfrac{1}{b_1+\dfrac{1}{\dfrac{..........}{b_{n-1}+\dfrac{1}{b_n}}}}\)

Bài 4: Cho tam giác ABC, trên cạnh AB, AC, BC lần lượt lấy các điểm M, L, K sao cho tứ giác KLMB là hình bình hành. Biết \(S_{AML}=\text{42,7283}cm^2\)\(S_{KLC}=51,4231cm^2\) . Tính diện tích tam giác ABC.

Cứu mình với mọi người ơi!!!

2
31 tháng 7 2017

  4. Dễ thấy  \(\Delta AML\approx\Delta LKC\left(g-g\right)\)

\(\Rightarrow\frac{AL}{LC}=\sqrt{\frac{S_{\Delta AML}}{S_{\Delta LKC}}}=\sqrt{\frac{42.7283}{51.4231}}\approx0.9115461896\)

\(\Rightarrow\frac{AL}{AC}=\frac{0.9115461896}{0.9115461896+1}=0.476863282\)

Lại có  \(\Delta AML\approx\Delta ABC\left(g-g\right)\)

\(\Rightarrow\frac{S_{AML}}{S_{ABC}}=\left(\frac{AL}{AC}\right)^2=0.476863282^2=0.2273985897\)

\(\Rightarrow S_{\Delta ABC}=\frac{S_{\Delta AML}}{0.2273985897}=\frac{42.7283}{0.2273985897}\approx187.9\left(cm^2\right)\)

31 tháng 7 2017

1. Ta có  \(\frac{BH}{CH}=\frac{\sqrt{7}}{\sqrt{5}}\Rightarrow BH=\frac{\sqrt{7}}{\sqrt{5}}CH\)

Mặt khác  \(BC=\sqrt{11}\Rightarrow BH+CH=11\) 

\(\Rightarrow\frac{\sqrt{7}}{\sqrt{5}}CH+CH=11\)

\(\Leftrightarrow CH=\frac{-55+11\sqrt{35}}{2}\)  và  \(BH=\frac{77-11\sqrt{35}}{2}\)

Có BH, CH và BC tính đc AB, AC  \(\left(AB=\sqrt{BH.BC};AC=\sqrt{CH.BC}\right)\)

Từ đó tính đc chu vi tam giác ABC.

2. Để cj gửi hình qua gmail cho

3. Chỉ còn cách làm từng bước thôi e

\(B=31+\frac{27}{\frac{30127}{2008}}=31+\frac{54216}{30127}=32+\frac{24089}{30127}\)

Để viết liên phân số, ta bấm phím tìm thương và số dư:

(Mỗi số b1, b2, b3, ..., bn-1 chính là thương; số chia của phép chia trước là số bị chia của phép chia sau, còn số dư của phép chia trước là số chia của phép chia sau, nhớ nhá)

- B1: Tìm thương và số dư của 30127 cho 24089, thương là 1, dư 6038, viết  \(B=32+\frac{1}{1+...}\)

- B2: Tìm thương và số dư của 24089 cho 6038, thương là 3, dư 5975, viết  \(B=32+\frac{1}{1+\frac{1}{3+...}}\)

- B3: Tìm thương và số dư của 6038 cho 5975, thương là 1, dư 63, viết  \(B=32+\frac{1}{1+\frac{1}{3+\frac{1}{1+...}}}\)

- B4: Tìm thương và số dư của 5975 cho 63, thương là 94, dư 53, viết  \(B=32+\frac{1}{1+\frac{1}{3+\frac{1}{1+\frac{1}{94+...}}}}\)

...

Cứ làm như vậy, đến khi số dư là 1 thì dừng lại, phân số cuối cùng  \(\frac{1}{b_n}\) thì bn chính là số chia cuối cùng, bn = 3

Kết quả:  \(B=32+\frac{1}{1+\frac{1}{3+\frac{1}{1+\frac{1}{94+\frac{1}{1+\frac{1}{5+\frac{1}{3+\frac{1}{3}}}}}}}}\)