K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

hình như là không

26 tháng 3 2018

k bn , kick nhé

15 tháng 6 2015

Giả sử có tồn tại một số n^2000 +1 chia hết cho 10

=> n^2000+1 chia hết cho 2 và 5 

* do n^2000+1 chia hết cho 5 => n^2000 có tận cùng là 4 hoặc 9

TH1 n^2000 có  tận cùng là 9 

do 2000 chia hết cho 4 => n^2000 có cùng số tận cùng với n^4 => n^4 có tận cùng là 9 => n lẻ 

nếu n có tận cùng là 1=> n^4 có tận cùng là 1 => loại 

nếu n có tận cùng là 3 => n^4 có tận cùng là 1=> loại 

nếu n có tận cùng là 5 => n^4 có tận cùng là 5 => loại 

nếu n có tận cùng là 7 => n^4 có tận cùng là 1 => loại 

nếu n có tận cùng là 9=> n^4 có tận cùng 1=> loại

vậy n ko tận cùng là 9 

th2 ; n ^2000  có tận cùng là 4 => n ^2000 chẵn => n^2000+1 lẻ => n^2000 +1 ko chia hết cho 2 => loại

vậy giả sử sai . ko tồn tại số n^2000 + 1 chia hết cho 10

 

15 tháng 6 2015

\(n^{2000}+1=\left(n^{1000}\right)^2+1\)

Vì các số bình phương có tận cùng bằng 0,1,9,6,5;4 mà tận cùng băng 9 thì (n^1000)^2 + 1 tận cùng 10 chia hết cho 10 

Vậy có tồn tại ( l ike nha)