Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
không thể, vì để có phân số mới bằng phân số a/b thì m=n và n khác 0
Do \(\frac{a}{b}< 1\Rightarrow a< b\Rightarrow a.m< b.m\)
Ta có : \(a.\left(b+m\right)=a.b+a.m\)
\(b.\left(a+m\right)=a.b+b.m\)
mà \(a.m< b.m\)\(\Rightarrow\)\(a.b+a.m< a.b+b.m\)
\(\Rightarrow\)\(a.\left(b+m\right)< b.\left(a+m\right)\)
\(\Rightarrow\)\(\frac{a}{b}< \frac{a+m}{b+m}\)
\(\frac{a}{b}\)< 1 <=> a < b <=> a.m < b.m <=> ab + a.m < ab + b.m
<=> a(b + m) < b(a + m)
<=> \(\frac{a}{b}\)< \(\frac{a+m}{b+m}\)
A = 81360384 - 77986545 = 3373839
Vì hiệu A có tận cùng là 9 nên không chia hết cho 10
B = 405n + 2205 + m2
405n có tận cùng là 5
2205 có tận cùng là 2
Đặt giả thuyết B chia hết cho 10 thì
...5 + ...2 + m2 = ...10
=> m2 có tận cùng là 3 .
Bình phương của một số không bao giờ có tận cùng là 3 .
Vậy B không chia hết cho 10
có phân số a/b (a;b thuộc Z, b khác 0) và a/b = am/bn khi a = 0
VD :
0/b = 0.m/bn
\(\frac{a}{b}=\frac{a}{b}.\frac{m}{n}\Leftrightarrow\frac{a}{b}\left(1-\frac{m}{n}\right)=0\Leftrightarrow\orbr{\begin{cases}\frac{a}{b}=0\\\frac{m}{n}=1\end{cases}}\)
Do \(m\ne n\Rightarrow\frac{m}{n}\ne1\Rightarrow\frac{a}{b}=0\Rightarrow a=0\)
Vậy a=0, b là số nguyên khác 0