K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

Ta có : \(\left(2x+3\right)^2\ge0\)

              \(\left(3x-2\right)^2\ge0\)

\(\Rightarrow\left(2x+3\right)+\left(3x-2\right)^2\ge0\)

\(\Rightarrow\begin{cases}\left(2x+3\right)^2=0\\\left(3x-2\right)^2=0\end{cases}\)

\(\Rightarrow\begin{cases}2x+3=0\\3x-2=0\end{cases}\)

\(\Rightarrow\begin{cases}2x=-3\\3x=2\end{cases}\)

\(\Rightarrow\begin{cases}x=-1,5\\x=\frac{2}{3}\end{cases}\)

Vì \(-1,5\ne\frac{2}{3}\) nên không có x để 2 số hạng bằng 0 ,có nghĩa là không có x nào thõa mãn đề bài .

14 tháng 8 2016

(1-2m)2 - 4m(m-2) >0

1-4m +4m2-4m2 +8m >0

4m +1 >0

m > -1/4

14 tháng 8 2016

với m> -4 thì đa thức co nghiệm là số hữu tỷ, không lẽ bn học trg chuyên mà không hiểu?

14 tháng 8 2016

Bơ t hết rồi ak khocroi

21 tháng 10 2016

\(\left|x-1\right|\ge0\)

\(\left(y+2\right)^{2016}\ge0\)

=> \(\left|x-1\right|+\left(y+2\right)^{2016}=0\)

\(\Leftrightarrow\begin{cases}x-1=0\\y+2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=1\\y=-2\end{cases}\)

Có: \(2x^5-5y^3+2017=2\cdot1^5-5\cdot\left(-2\right)^3+2017=2059\)

14 tháng 8 2016

1. Nếu m = 0 => -x-2=0 => x = -2 là nghiệm hữu tỉ (nhận)

2. Nếu \(m\ne0\) , xét \(\Delta=\left(1-2m\right)^2-4.m.\left(m-2\right)=4m+1\)

Để pt có nghiệm hữu tỉ thì \(\Delta\) phải là một số chính phương lẻ , đặt \(\Delta=\left(2k+1\right)^2\) (k thuộc N)

Suy ra \(4k^2+4k+1=4m+1\Leftrightarrow m=k^2+k=k\left(k+1\right)\)

Vậy m = k(k+1) với k là số tự nhiên thì pt có nghiệm hữu tỉ.

1 tháng 8 2019

\(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)

\(\Rightarrow\frac{acy-bcx}{c^2}=\frac{bcx-abz}{b^2}=\frac{abz-acy}{a^2}=\frac{0}{a^2+b^2+c^2}=0\)

\(\Rightarrow\hept{\begin{cases}ay-bx=0\\cx-az=0\\bz-cy=0\end{cases}}\)

\(\Rightarrow\left(ay-bx\right)^2+\left(cx-az\right)^2+\left(bz-ay\right)^2=0\)

\(\Rightarrow a^2y^2-2axby+b^2x^2+a^2z^2-2axcz+c^2x^2+b^2z^2-2bycz\)

\(+c^2y^2=0\)

\(\Rightarrow a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)

\(=a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)

\(\Rightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)

28 tháng 7 2019

\(A=\left(1+b^2+a^2+a^2b^2\right).\left(1+c^2\right)\)

\(=1+a^2+b^2+c^2+a^2c^2+b^2c^2+a^2b^2+a^2b^2c^2\)

\(=1+\left(a+b+c\right)^2-2.\left(ab+bc+ac\right)+\left(ab+bc+ac\right)^2-2abc.\left(a+b+c\right)+a^2b^2c^2\)

Thay ab+bc+ac=1 vào A, ta có:

\(A=1+\left(a+b+c\right)^2-2+1-2abc.\left(a+b+c\right)+a^2b^2c^2\)

\(=\left(a+b+c\right)^2-2abc.\left(a+b+c\right)+a^2b^2c^2\)

\(=\left(a+b+c-abc\right)^2\)

Vì a,b,c thuộc Z 

\(\Rightarrow\left(a+b+c-abc\right)^2\)là số chính phương

28 tháng 7 2019

\(\hept{\begin{cases}\left(1+a^2\right)=\left(ab+bc+ca+a^2\right)=b\left(a+c\right)+a\left(a+c\right)=\left(a+b\right)\left(a+c\right)\\\left(1+b^2\right)=\left(ab+bc+ca+b^2\right)=a\left(b+c\right)+b\left(b+c\right)=\left(a+b\right)\left(b+c\right)\\\left(1+c^2\right)=\left(ab+bc+ca+c^2\right)=a\left(b+c\right)+c\left(b+c\right)=\left(a+c\right)\left(b+c\right)\end{cases}}\)

\(\Rightarrow A=\text{[}\left(a+b\right)\left(b+c\right)\left(c+a\right)\text{]}^2\Rightarrow\text{đ}pcm\)