K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
4 tháng 9 2016
Ta có : x3 + xyz = x(x2+yz)=957 là số lẻ => x là số lẻ
Tương tự: y, z cũng là số lẻ
Do đó : x3 là số lẻ, xyz là số lẻ ( vì x,y,z là số lẻ)
Nên : x3 + xyz là số chẵn ( trái với đề bài)
Vậy: ko có các số nguyên x,y,z nào đồng thời thỏa mãn 3 đẳng thức trên
VT
0
BN
0
LT
0
13 tháng 7 2016
P = x^3 (z-y^2) +y^3(x-z^2)+z^3(y-x^2)+xyz(xyz-1)
= -x^3 (y^2-z) +y^3x-y^3z^2 +z^3y-z^3x^2+x^2y^2z^2-xyz
= -x^3 (y^2-z)+(y^3x-xyz)-(y^3z^2-z^3y)+(x^2y^2...
= -x^3 (y^2-z)+xy(y^2-z)-yz^2(y^2-z)+x^2z^2(y^2...
= (y^2-z)(-x^3+xy-yz^2+x^2z^2)
= (y^2-z)[-x(x^2-y)+z^2(x^2-y)]
= (y^2-z)(x^2-y)(z^2-x) = b. a. c ko phụ thuộc vào biến
giả sử có các số nguyên x,y,z thỏa mãn các đẳng thức đã cho
xét x^3 + xyz= 975 ta có
x^3 + xyz= x(x^2+yz)=975 => x là số lẻ
tương tự xết y^3 + xyz và z^3 + xyz ta cũng đc y,z là số lẻ
x là số lẻ => x^3 là số lẻ
=> x^3+xyz là số chẵn
trái với đề bài nên ko tồn tại số nguyên x,y,z thỏa mãn đẳng thức đã cho