Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm vd 2 bài nha:
a) n+6 chia hết cho n+2
n+2 chia hết cho n+2
nên (n+6)-(n+2) chia hết cho n+2
4 chia hết cho n-2
=> n-2 = 1;-1;2;-2;4;-4
=> n=3;1;4;0;6
d) n^2 +4 chia hết cho 4
n+1 chia hết cho n+1 nên (n+1)(n+1) chia hết cho n+1 hay n2+2n+1 chia hết cho n+1
=> (n^2+2n+1)-(n^2+4) chia hết cho n-1
=> 2n+1-4 chia hết cho n-1
=> 2n - 3 chia hết cho n-1
n-1 chia hết cho n-1 nên 2n-2 chia hết cho n-1
=> (2n-2)-(2n-3) chia hết cho n-1
=> 1 chia hết cho n-1
=> n-1 = 1;-1
=> n=0
Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
a) n+5 chia hết cho n-1
=>n-1+6 chia hết cho n-1
=>6 chia hết cho n-1
=> n-1 thuộc Ư(6)={1;2;3;6;-1;-2;-3;-6}
Bảng bn tự kẻ nha còn các câu khác làm tương tự
23a.Ta có : n+2 / n-3 = n-3+5 / n-3 = n-3 / n-3 + 5 / n-3 .Vì n-3 chia hết cho n-3 nên để n+2 chia hết cho n-3 thì 5 chia hết cho n-3 => n-3 = -5;-1;1;5 => n = -2;2;4;8.
23b.Ta có : 2n-7 / n-1 = 2n-2-5 / n-1 = 2n-2 / n-1 - 5/ n-1 .Vì 2n-2 = 2(n-1) chia hết cho n-1 nên để 2n-7 chia hết cho n-1 thì 5 chia hết cho n-1 => n-1 = -5;-1;1;5 => n = -4;0;2;6.
24a.
x+3 | -13 | -1 | 1 | 13 |
2y-1 | -1 | -13 | 13 | 1 |
2y | 0 | -12 | 14 | 2 |
x | -16 | -4 | -2 | 10 |
y | 0 | -6 | 7 | 1 |
Vậy (x;y) = (-16;0);(-4;-6);(-2;7);(10;1) thỏa mãn (x+3)(2y-1) = 13
24b.
x-2 | -11 | -1 | 1 | 11 |
xy+1 | -1 | -11 | 11 | 1 |
xy | -2 | -12 | 10 | 0 |
x | -9 | 1 | 3 | 13 |
y | -12 | 0 |
Vậy (x;y) = (1;-12);(13;0) thỏa mãn (x-2)(xy+1) = 11
23a.Ta có : n+2 / n-3 = n-3+5 / n-3 = n-3 / n-3 + 5 / n-3 .Vì n-3 chia hết cho n-3 nên để n+2 chia hết cho n-3 thì 5 chia hết cho n-3 => n-3 = -5;-1;1;5 => n = -2;2;4;8.
23b.Ta có : 2n-7 / n-1 = 2n-2-5 / n-1 = 2n-2 / n-1 - 5/ n-1 .Vì 2n-2 = 2(n-1) chia hết cho n-1 nên để 2n-7 chia hết cho n-1 thì 5 chia hết cho n-1 => n-1 = -5;-1;1;5 => n = -4;0;2;6.
24a.
x+3 | -13 | -1 | 1 | 13 |
2y-1 | -1 | -13 | 13 | 1 |
2y | 0 | -12 | 14 | 2 |
x | -16 | -4 | -2 | 10 |
y | 0 | -6 | 7 | 1 |
Vậy (x;y) = (-16;0);(-4;-6);(-2;7);(10;1) thỏa mãn (x+3)(2y-1) = 13
24b.
x-2 | -11 | -1 | 1 | 11 |
xy+1 | -1 | -11 | 11 | 1 |
xy | -2 | -12 | 10 | 0 |
x | -9 | 1 | 3 | 13 |
y | -12 | 0 |
Vậy (x;y) = (1;-12);(13;0) thỏa mãn (x-2)(xy+1) = 11
a/ a+5 chia hết n+2
a+2+3 chia hết n+2
a+2 chia hết n+2, a+2+3 chia hết n+2 nên 3 chia hết n+2 => n+2 thuộc ước của 3
n+2={1;-1;3;-3} => tự tìm n
b/ 2n+10 chia hết n+1
hay 2(n+1) +8 chia hết n+1
2(n+1)+8 chia hết n+1, 2(n+1) chia hết n+1 nên 8 chia hết n+1. tương tự tự làm
c/ n^2+4 chia hết n+1
n+1 chia hết n+1
=> (n+1).n chia hết n+1
n^2+n chia hết n+1 mà n^2+4 cũng chia hết n+1
=> n^2+n-(n^2+4) chia hết n+1
n^2+n-n^2-4 chia hết n+1
=> n-4 chia hết n+1
n+1-5 chia hết n+1. mà n+1 chia hết n+1, n+1-5 chia hết n+1 nên 5 chia hết n+1
=> n+1 thuộc ước của 5. tự làm
a, \(n+8⋮n\)
\(\Rightarrow8⋮n\)(vì \(n⋮n\))
\(\Rightarrow n\inƯ\left(8\right)\)
\(\Rightarrow n\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
b, \(3n+5⋮n\)
\(\Rightarrow5⋮n\)(vì \(3n⋮n\))
\(\Rightarrow n\inƯ\left(5\right)\)
\(\Rightarrow n\in\left\{\pm1;\pm5\right\}\)
c, \(n+7⋮n+1\)
\(\Rightarrow\left(n+1\right)+6⋮n+1\)
\(\Rightarrow6⋮n+1\)(vì \(n+1⋮n+1\))
\(\Rightarrow n+1\in\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
\(\Rightarrow n\in\left\{-7;-4;-3;-2;0;1;2;5\right\}\)
Hok tốt nha^^
a) Ta có : n+5 = (n+2)+3
Mà n+2 chia hết cho n+2 nên 3 chia hết cho n+2. Suy ra n+2 thuộc ước của 3
ta có bảng sau:(bạn tự kẻ bảng nha)
n+2 ...........................
n ................................
những dấu chấm ở dòng n+2 thì bạn viết các ước của 3 nha (nhớ viết cả số âm nữa nha)
những dấu chấm ở dòng n thì có lẽ bạn tự viết được phải ko ?
bạn nhớ tic cho mình với nha giờ mình bận rồi bạn tự làm hai câu còn lại nha
Đáp án cần chọn là: D