K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 6 2020

\(f'\left(x\right)=g\left(x\right)=3x^2-6mx-9m^2\)

- Với \(m=0\Rightarrow f'\left(x\right)=3x^2\ge0;\forall x\Rightarrow f\left(x\right)\) đồng biến trên R (ktm)

- Với \(m\ne0\Rightarrow f'\left(x\right)=0\) luôn có 2 nghiệm pb

Để \(f\left(x\right)\) nghịch biến trên \(\left(-3;0\right)\Leftrightarrow f'\left(x\right)\le0;\forall x\in\left(-3;0\right)\)

\(\Leftrightarrow x_1< -3< 0< x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}g\left(-3\right)< 0\\g\left(0\right)< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-9m^2+18m+27< 0\\-9m^2< 0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m>3\\m< -1\end{matrix}\right.\) \(\Rightarrow m=\left\{-5;-4;-3;-2;4;5\right\}\)

NV
8 tháng 8 2020

1.

\(y'=6x^2+3m\)

Để hàm nghịch biến trên \(\left(1;2\right)\Leftrightarrow y'=0\) có 2 nghiệm pb thỏa mãn \(x_1\le1< 2\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\sqrt{\frac{-m}{2}}\le2\end{matrix}\right.\) \(\Leftrightarrow-4\le m< 0\)

2.

Bạn coi lại đề, biểu thức y không hợp lý

11 tháng 8 2018

y'=2x2-2(2m-3)x+2(m2-3m)=2(x-m)(x-m+3) => h/s nghịch biến trên (m-3; m) => YCBT <=> m-3 =<1 và 3=<m <=> 3=<m=<4

5 tháng 1 2019

.

28 tháng 7 2019
https://i.imgur.com/6aR3ny6.jpg
28 tháng 7 2019

bài 1 bạn dò lại xem. Còn bài 2 tương tự

Phiếu ôn số 01 - 2019- Sự nghịch biến đồng biến Câu 1 : Hàm số y = 2x3-3x2+1 nghịch biến trên : A . (0;+∞) B. (0;1) C. (-∞;1) D. (-∞;0) ; (1;+∞) Câu 2: Hàm số y = x4-2x3+2x+1 đòng biến trên : A. (-\(\dfrac{1}{2}\);+∞) B. (-∞;\(\dfrac{-1}{2}\)) C. (0;+∞) D. (-1;\(\dfrac{-1}{2}\)) Câu 3: Hàm số y =...
Đọc tiếp

Phiếu ôn số 01 - 2019- Sự nghịch biến đồng biến

Câu 1 : Hàm số y = 2x3-3x2+1 nghịch biến trên :

A . (0;+∞) B. (0;1) C. (-∞;1) D. (-∞;0) ; (1;+∞)

Câu 2: Hàm số y = x4-2x3+2x+1 đòng biến trên :

A. (-\(\dfrac{1}{2}\);+∞) B. (-∞;\(\dfrac{-1}{2}\)) C. (0;+∞) D. (-1;\(\dfrac{-1}{2}\))

Câu 3: Hàm số y = \(\dfrac{x+1}{x-1}\) luôn nghịch biến trên :

A. R B. R\{1} C. (0;+∞) D. (-∞;1);(1;+∞)

Câu 4. Hàm số nào sau đâu nghịch biến trên (1;3) :

A. y = x2-4x+8 B.y =\(\dfrac{x^2+x-1}{x-1}\) C.y =\(\dfrac{2}{3}x^3-4x^2+6x-1\) D. y =\(\dfrac{2x-4}{x-1}\)

Câu 5. Hàm số nào sau đây luôn đồng biến trên R :

A. y = x3+2016 B. y = tanx C. y= x4+x2+1 D. y =\(\dfrac{2x+1}{x+3}\)

Câu 6. Trong các hàm số sau hàm số nào đồng biến trên miền xác định của nó :

A. y = \(\sqrt[3]{x+1}\) B.y = \(\dfrac{\sqrt{x^2+1}}{x^2}\) C. y = \(\dfrac{2x+1}{x+1}\) D. y = sinx

Câu 7. Hà, số y=|x-1|(x2-2x-2) có bao nhiêu khoảng đồng biến :

A.1 B.2 C.3 D.4

Câu 8. Hàm số y = \(\sqrt{2x-x^2}\) nghịch biến trên khoảng nào ?

A. (1;2) B. (1;+∞) C. ( 0;1) D. (0;2)

Câu 9 . Trong các hàm số sau , hàm số nào nghịch biến trên khoảng (0;2) :

A. y = \(\dfrac{x+3}{x-1}\) B. y = x4+2x2+3 C. y= x3-x2+3x-5 D. y= x3-3x2-5

1
7 tháng 8 2018

câu 1 B

câu 2 B

câu 3 D

câu 4 C

câu 5 C

câu 8 A

câu 9 D

NV
20 tháng 5 2019

\(y'=3\left(m-1\right)x^2+6mx+4m+4\)

Để hàm số đã cho đồng biến trên R \(\Leftrightarrow y'\ge0\) \(\forall x\in R\)

\(\Leftrightarrow\left\{{}\begin{matrix}3\left(m-1\right)>0\\\Delta'=\left(3m\right)^2-3\left(m-1\right)\left(4m+4\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>1\\-3m^2+12\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>1\\\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m\ge2\)

\(\Rightarrow m=\left\{2;3;4...2019\right\}\Rightarrow\)\(2019-2+1=2018\) giá trị nguyên

20 tháng 5 2019

cảm ơn b

NV
17 tháng 9 2020

\(y'=2\left(x^2-x\right)\left(2x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\frac{1}{2}\end{matrix}\right.\)

BBT:

Hỏi đáp Toán

Hàm nghịch biến trên các khoảng \(\left(-\infty;0\right)\)\(\left(\frac{1}{2};1\right)\)