Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cac so tu nhien be hon 999,99 va lon hon 2014,5 bat dau tu 1000 den 2014 va co khoang cach la 1
=> co tat ca cac so tu nhien thoa man de bai la;(2014-1000):1+1=1015(so)
dap so:1015 so
=> 1000 < =a<=2014
=>(2014-1000):1+1=1015
vậy có 1015 số a thỏa mãn đề bài
số tự nhiên nhỏ 999 , số tự nhiên lớn 2014
<=> giữa lớn và nhỏ có tất cả
2014 - 999 = 1015 ( số )
đáp số : 1015 số
số a bé nhất thỏa mãn điều kiện là 1000
số a lớn nhất thỏa mãn điều kiện là 2014
số số tự nhiên a thỏa mãn điều kiện là
(2014-1000)/1+1=1015 số
Đ/S:1015 số
Để giải bài toán này, ta có thể sử dụng phương pháp liệt kê hoặc algebra. Dưới đây là cách giải bằng phương pháp algebra.
Vì c là số lẻ, ta có thể biểu diễn nó dưới dạng c = 2k + 1, với k là một số nguyên dương.
Substitute giá trị của c vào phương trình a + b + c = 21 ta có:
a + b + 2k + 1 = 21
a + b = 20 - 2k
Vì a < b < 21 - a - b, ta có thể thay bằng biến x và sử dụng phương pháp bisection để tìm nghiệm của x bằng cách tìm giá trị k thích hợp. Đặt f(k) = a + x + 2k + 1 - 21.
Vì a và x là số lẻ nên a + x là số chẵn, khi đó f(k) cũng là số chẵn.
Ta có thể kiểm tra giá trị của f(k) để tìm giá trị của x. Lưu ý rằng k phải thỏa mãn điều kiện k ≤ (21 - 1)/2 = 10.
Như vậy, để tìm số lẻ có ba chữ số thoả mãn điều kiện a < b < c và a + b + c = 21, ta có thể thực hiện các bước sau:
- Thử từng giá trị của k từ 1 đến 10:
- Với mỗi k, tính giá trị của f(k) = a + x + 2k + 1 - 21
- Nếu f(k) = 0 và a, x là số lẻ thì đó là một bộ số thỏa mãn. Nếu f(k) ≠ 0 hoặc a, x không phải số lẻ thì tiếp tục thử k tiếp theo.
- Tổng hợp tất cả các bộ số thỏa mãn để có số lẻ có ba chữ số thoả mãn yêu cầu của bài toán.
Ví dụ, thử với k = 1, ta có:
a + x = 20 - 2(1) = 18
f(1) = a + x + 3 - 21 = a + x - 18
Nếu a + x là số lẻ, thì ta phải có a + x - 18 là số lẻ và bằng 1, 3, 5, 7 hoặc 9.
- Nếu a + x - 18 = 1, ta có a + x = 19, vậy có một bộ số là (9,9,3).
- Nếu a + x - 18 = 3, ta có a + x = 21, vậy không có bộ số nào là số lẻ và thoả mãn điều kiện.
- Nếu a + x - 18 = 5, ta có a + x = 23, vậy không có bộ số nào là số lẻ và thoả mãn điều kiện.
- Nếu a + x - 18 = 7, ta có a + x = 25, vậy có một bộ số là (7,11,3).
- Nếu a + x - 18 = 9, ta có a + x = 27, vậy không có bộ số nào là số lẻ và thoả mãn điều kiện.
Vậy có hai số lẻ có ba chữ số thoả mãn yêu cầu của bài toán, đó là 793 và 911.
Số tự nhiên nhỏ nhất là: 999
Số tự nhiên lớn nhất là: 2014
Vạy có: 2014-999=1015
Mình chắc 100% bạn ủng hộ nhé
Các số tự nhiên thỏa mãn đề bài:
\(489;579;678\)
Vậy có 3 số thỏa mãn
Vì c là số lẻ, ta có thể biểu diễn nó dưới dạng c = 2k + 1, với k là một số nguyên dương.
Substitute giá trị của c vào phương trình a + b + c = 21 ta có:
a + b + 2k + 1 = 21
a + b = 20 - 2k
Vì a < b < 21 - a - b, ta có thể thay bằng biến x và sử dụng phương pháp bisection để tìm nghiệm của x bằng cách tìm giá trị k thích hợp. Đặt f(k) = a + x + 2k + 1 - 21.
Vì a và x là số lẻ nên a + x là số chẵn, khi đó f(k) cũng là số chẵn.
Ta có thể kiểm tra giá trị của f(k) để tìm giá trị của x. Lưu ý rằng k phải thỏa mãn điều kiện k ≤ (21 - 1)/2 = 10.
Như vậy, để tìm số lẻ có ba chữ số thoả mãn điều kiện a < b < c và a + b + c = 21, ta có thể thực hiện các bước sau:
Ví dụ, thử với k = 1, ta có:
a + x = 20 - 2(1) = 18
f(1) = a + x + 3 - 21 = a + x - 18
Nếu a + x là số lẻ, thì ta phải có a + x - 18 là số lẻ và bằng 1, 3, 5, 7 hoặc 9.
Vậy có hai số lẻ có ba chữ số thoả mãn yêu cầu của bài toán, đó là 793 và 911.
Tick cho mình nha