K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1,Cho tập X có n phần tử trong đó có 2 phần tử a và b.Tính số các hoán vị của tập X sao cho a và b không đứng cạnh nhau?2,Cho tập X=\(\left\{1;2;3;.....2n\right\}\).Hỏi có bao nhiêu hoán vị của tập X mà các phần tử chẵn sẽ đứng ở vị trí chẵn?3,Có tất cả bao nhiêu số tự nhiên chẵn gồm 5 chữ số khác nhau được thành lập từ các chữ số 1;2;3;4;5?4,Gọi A là tập hợp tất cả các số tự nhiên có...
Đọc tiếp

1,Cho tập X có n phần tử trong đó có 2 phần tử a và b.Tính số các hoán vị của tập X sao cho a và b không đứng cạnh nhau?

2,Cho tập X=\(\left\{1;2;3;.....2n\right\}\).Hỏi có bao nhiêu hoán vị của tập X mà các phần tử chẵn sẽ đứng ở vị trí chẵn?

3,Có tất cả bao nhiêu số tự nhiên chẵn gồm 5 chữ số khác nhau được thành lập từ các chữ số 1;2;3;4;5?

4,Gọi A là tập hợp tất cả các số tự nhiên có 7 chữ số đôi một khác nhau được tạo ra từ các chữ số 0;1;2;3;4;5;6.Hỏi có bao nhiêu số thuộc A mà trong số đó có chữ số 1 và cho số 2 đứng cạnh nhau ?

5,Từ 5 học sinh không có bạn nào trùng nhau trong đó có bạn Hoa và Hồng.Hỏi có bao nhiêu cách sắp xếp 5 bạn đó vào 1 bàn dài 5 chỗ sao cho:

a,Số cách xếp là tùy ý.

b,Hoa và Hồng ngồi cạnh nhau.

c,Hoa và Hồng không ngồi cạnh nhau.

d,Hoa và Hồng ngồi cạnh nhau 1 đứa bạn.

e,Hoa và Hồng ở hai đầu bàn.

0
6 tháng 11 2019

Chọn C

Số các hoán vị gồm 3 phần tử của A là  P 3 = 3! = 6

11 tháng 6 2019

Đáp án D

Tập A gồm 4 phần tử nên số hoán vị bằng 4!=24

28 tháng 3 2019

Đáp án A.

13 tháng 9 2018

+ Cho tập A gồm n phần tử.

Mỗi hoán vị của A là kết quả của sự sắp xếp thứ tự n phần tử của tập A.

+ Số các hoán vị: Pn = n! = 1.2.3.4.5….n.

Ví dụ: Số hoán vị của tập gồm 6 phần tử là: P6 = 6! = 720.

Số hoán vị của tập gồm 3 phần tử là: P3 = 6.

25 tháng 3 2019

Chọn A

Lời giải.

Số tập hợp con khác rỗng có số phần từ chẵn là số cách chọn số phần tử chẵn từ 20 phần tử

Do đó số tập con là

Tính tổng trên bằng cách khai triển nhị thức Niutơn hoặc dùng máy tính cầm tay và đối chiếu các đáp án

12 tháng 9 2017

Đáp án C

Phương pháp: Sử dụng công thức tổ hợp chập của phần tử trong khi chọn các tập hợp con có 2,4,6,…,20 phần tử.

Cách giải:

*TH1: A có 2 phần tử  => có C 20 2 tập hợp con có 2 phần tử.

*TH2: A có 4 phần tử  => có C 20 4 tập hợp con có 4 phần tử.

….

*TH10: A có 20 phần tử  => có C 20 20  tập hợp con có 20 phần tử.

Suy ra tất cả có ∑ i = 1 10 C 20 2 i   =   2 19   -   1  trường hợp.

15 tháng 4 2017

đơn giản mà , mik hướng dẫn bạn , còn lại bạn tự làm nhé !

15 tháng 4 2017

​Hướng dẫn giải : Gọi T và G tương ứng là nam và nữ trong hàng . Theo bài ra vs đây mà nam đứng đầu TGTG...TG có :

n.n.(n-1)(n-1)...2.2.1.1=(n!)2 cách .

Tương tự vs day nữ đứng đầu có (n!)2 cách . Vậy có 2(n!)2 cách xếp nam nữ đứng xen kẽ nhau .

14 tháng 3 2018

Xét tập X = {A, B, C, D, E ; F}. Với mỗi cách chọn hai phần tử của tập X và sắp xếp theo một thứ tự ta được một vectơ thỏa mãn yêu cầu

Mỗi vectơ thỏa mãn yêu cầu tương ứng cho ta một chỉnh hợp chập 2 của 6 phần tử thuộc tập X.

Vậy số các vectơ thỏa mãn yêu cầu bằng số tất cả các chỉnh hợp chập 2 của 6, bằng   

Chọn C.