Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)
nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\).
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)
\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)
\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)
Dấu \(=\)xảy ra khi \(m=-1\).
Tính delta => Tìm điều kiện của m để PT có 2 nghiệm x1, x2 là delta > 0.
Áp dụng Viets vào để tìm x1+x2 và x1.x2 theo m.
Sau đó: vì |x1-x2|=3 => (x1-x2)^2=9 <=> x12 + x22 -2x1.x2=9 <=> (x1+x2)2 - 4x1.x2=9
Sau đó thay x1+x2 và x1.x2 (theo Viets) vào để tìm được m.
Đối chiếu với đk của m là được
\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)
\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm
\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)
a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)
\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)
với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề
Xét \(x^2-\left(2m+1\right)x-3=0\left(1\right)\)
PT (1) có a.c=\(1\cdot\left(-3\right)=-3< 0\)
=> PT (1) luôn có 2 nghiệm phân biệt trái dấu với mọi m
Mà \(x_1< x_2\left(gt\right)\)nên x1<0 và x2>0 => \(\hept{\begin{cases}\left|x_1\right|=-x_1\\\left|x_2\right|=x_2\end{cases}}\)
Áp dụng hệ thức Vi-et ta có \(x_1+x_2=2m+1\)
Theo bài ra \(\left|x_1\right|-\left|x_2\right|=5\Rightarrow-x_1-x_2=5\Leftrightarrow x_1+x_2=-5\Leftrightarrow2m+1=-5\Leftrightarrow m=-3\)
a. x2 -6m + 2m + 5 =0 (có a=1 ; b=-6 ; c=2m+5)
Ta có Δ=b2 - 4ac ⇒ Δ=26-8m
Để pt có 2 nghiệm thì Δ≥0 ⇒ 26-8m≥0 ⇔ m≤\(\frac{-13}{4}\)
Vì pt có 2 nghiệm nên theo hệ thúc Vi-ét ta có: x1 + x2 = 6 ; x1x2=2m+5
Ta có: x12 + x22 = 26 ⇔ x12 + 2x1x2 + x22 - 2x1x2 = 26 ⇔ \(\left(x_1+x_2\right)^2\) - 2x1x2 = 26
Thay số: 62 - 2(2m+5) = 26 ⇒ 36 - 4m - 10 = 26 ⇒ 4m = 0 ⇒ m=0.
Vậy với m=0 thì ...........
a/ \(\Delta'=9-\left(2m+5\right)=4-2m\ge0\Rightarrow m\le2\)
Khi đó theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=2m+5\end{matrix}\right.\)
\(x_1^2+x_2^2=26\)
\(\Leftrightarrow x_1^2+2x_1x_2+x_2^2-2x_1x_2=26\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-26=0\)
\(\Leftrightarrow6^2-2\left(2m+5\right)-26=0\)
\(\Leftrightarrow-4m=0\)
\(\Rightarrow m=0\) (thỏa mãn)
(x1-x2)2=16
<=>(x1+x2)2-4x1x2=16
<=>36-4m=16
<=>m=5( thõa mãn điều kiện delta dương)
\(\Delta=\left[-\left(m+3\right)\right]^2-4\left(2m+2\right)\\ =m^2+6m+9-8m-8\\ =m^2-2m+1\\ =\left(m-1\right)^2\)
de pt co 2 no pb thi Δ >0
<=> (m-1)^2>0
ma \(\left(m-1\right)^2\ge0\forall m\\ \Rightarrow\left(m-1\right)^2\ne0\\ \Leftrightarrow m\ne1\)
Viet: \(x1+x2=m+3\\ x1x2=2m+2\)
0<x1<x2<2\(\Rightarrow\left\{{}\begin{matrix}0< x1+x2< 4\\0< x1x1< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}0< m+3< 4\\0< 2m+2< 4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-3< m< 1\\-1< m< 1\end{matrix}\right.\\ \Leftrightarrow-1< m< 1\)