Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có hàm số
\(y=2\left(x^2-2mx+m^2\right)-\left(2m^2+m-5\right)\ge-\left(2m^2+m-5\right)\)
vậy \(-\left(2m^2+m-5\right)=5\Leftrightarrow2m^2+m=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=-\frac{1}{2}\end{cases}}\)
Vậy có hai giá trị của m
\(mx^2-2\left(m+2\right)x+2m-1< 0\)
\(< =>mx^2-2\left(m+2\right)x+2m-1\ge0\)
\(a=m\ne0\)
\(\Delta=\left(2m+2\right)^2-4m\left(2m-1\right)\)
\(\Delta=4m^2+8m+4-8m^2+4m\)
\(\Delta=12m-4m^2+4\)
\(< =>\hept{\begin{cases}a>0\\\Delta\le0\end{cases}\hept{\begin{cases}m>0\\12m-4m^2+4\le0\end{cases}\hept{\begin{cases}m>0\\m=\left[\frac{3-\sqrt{13}}{2};\frac{3+\sqrt{13}}{2}\right]\end{cases}}}}\)
\(< =>m=(0;\frac{3+\sqrt{13}}{2}]\)
vậy m vô số nghiệm để bpt vô nghiệm
TH1: \(-\frac{b}{2a}=\frac{-2m-1}{2}\in\left[0;1\right]\)
\(\Leftrightarrow0\le\frac{-2m-1}{2}\le1\) \(\Leftrightarrow\) \(-\frac{3}{2}\le m\le-\frac{1}{2}\)
Khi đó \(f\left(x\right)_{min}=f\left(-\frac{b}{2a}\right)=f\left(\frac{-2m-1}{2}\right)=\frac{-4m-5}{4}\)
\(\Rightarrow-\frac{4m+5}{4}=1\Rightarrow m=-\frac{9}{4}\notin\left[-\frac{3}{2};-\frac{1}{2}\right]\) (loại)
TH2: \(-\frac{b}{2a}=\frac{-2m-1}{2}< 0\Leftrightarrow m>-\frac{1}{2}\)
Khi đó \(f\left(x\right)\) đồng biến trên \(\left[0;1\right]\Rightarrow f\left(x\right)_{min}=f\left(0\right)=m^2-1=1\)
\(\Rightarrow\left[{}\begin{matrix}m=-\sqrt{2}\left(l\right)\\m=\sqrt{2}\end{matrix}\right.\)
TH3: \(-\frac{b}{2a}=\frac{-2m-1}{2}>1\Leftrightarrow m< -\frac{3}{2}\)
Khi đó \(f\left(x\right)\) nghịch biến trên \(\left[0;1\right]\Rightarrow f\left(x\right)_{min}=f\left(1\right)=m^2+2m+1=1\)
\(\Rightarrow\left[{}\begin{matrix}m=0\left(l\right)\\m=-2\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}m=-2\\m=\sqrt{2}\\\end{matrix}\right.\)
Cái đó thì bạn phải xem lại lý thuyết về hàm \(y=ax^2+bx+c\) khi \(a>0\) chứ
Hàm nghịch biến trên \(\left(-\infty;-\frac{b}{2a}\right)\) cũng như các tập con của nó
Hàm đồng biến trên \(\left(-\frac{b}{2a};+\infty\right)\) cũng như các tập con của nó