Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PHÒNG GIÁO DỤC VÀ ĐÀO TẠO HUYỆN HOẰNG HOÁ | ĐỀ THI HỌC SINH GIỎI LỚP 6 |
Bài 1 (4,5 điểm) Tính giá trị các biểu thức sau:
Bài 2 (4,0 điểm)
a. Tìm số tự nhiên x biết 8.6 + 288 : (x - 3)2 = 50
b. Tìm các chữ số x; y để chia cho 2; 5 và 9 đều dư 1.
c. Chứng tỏ rằng nếu p là số nguyên tố lớn hơn 3 thì p2 - 1 chia hết cho 3.
Bài 3 (4,5 điểm)
a. Cho biểu thức:
Tìm tất cả các giá trị nguyên của n để B là số nguyên.
b.Tìm các số nguyên tố x, y sao cho: x2 + 117 = y2
c. Số 2100 viết trong hệ thập phân có bao nhiêu chữ số .
Bài 4 (5,0 điểm)
Cho góc xBy = 550. Trên các tia Bx; By lần lượt lấy các điểm A; C (A ≠ B; C ≠ B). Trên đoạn thẳng AC lấy điểm D sao cho góc ABD = 300
a. Tính độ dài AC, biết AD = 4cm, CD = 3cm.
b. Tính số đo của góc DBC.
c. Từ B vẽ tia Bz sao cho góc DBz = 900. Tính số đo góc ABz.
Bài 5 (2,0 điểm)
a. Tìm các chữ số a, b, c khác 0 thỏa mãn:
b. Cho . Chứng minh A là số tự nhiên chia hết cho 5.
Đáp án đề thi học sinh giỏi môn Toán lớp 6
Bài 1 (4,5 điểm)
Bài 2 (4,0 điểm)
a. Biến đổi được: (x - 3)2 = 144 = 122 = (-12)2 ↔ x - 3 = 12 hoặc x - 3 = -12 ↔ x = 15 hoặc x = -9
Vì x là số tự nhiên nên x = -9 (loại). Vậy x = 15
b. Do chia cho 2 và 5 đều dư 1 nên y = 1. Ta có A =
Vì A = chia cho 9 dư 1 → - 1 chia hết cho 9 →
↔ x + 1 + 8 + 3 + 0 chia hết cho 9 ↔ x + 3 chia hết cho 9, mà x là chữ số nên x = 6
Vậy x = 6; y = 1
c. Xét số nguyên tố p khi chia cho 3.Ta có: p = 3k + 1 hoặc p = 3k + 2 (k ∈ N*)
Nếu p = 3k + 1 thì p2 - 1 = (3k + 1)2 -1 = 9k2 + 6k chia hết cho 3
Nếu p = 3k + 2 thì p2 - 1 = (3k + 2)2 - 1 = 9k2 + 12k chia hết cho 3
Vậy p2 - 1 chia hết cho 3.
Bài 3 (4,5 điểm)
a. Để B nhận giá trị nguyên thì n - 3 phải là ước của 5
=> n - 3 ∈ {-1; 1; -5; 5} => n ∈ { -2 ; 2; 4; 8}
Đối chiếu đ/k ta được n ∈ {- 2; 2; 4; 8}
b. Với x = 2, ta có: 22 + 117 = y2 → y2 = 121 → y = 11 (là số nguyên tố)
* Với x > 2, mà x là số nguyên tố nên x lẻ y2 = x2 + 117 là số chẵn
=> y là số chẵn
kết hợp với y là số nguyên tố nên y = 2 (loại)
Vậy x = 2; y = 11.
c. Ta có: 1030= 100010 và 2100 =102410. Suy ra: 1030 < 2100 (1)
Lại có: 2100= 231.263.26 = 231.5127.64 và 1031=231.528.53=231.6257.125
Nên: 2100< 1031 (2). Từ (1) và(2) suy ra số 2100 viết trong hệ thập phân có 31 chữ số.
môn gì ,mà mỗi trường khác nhau .ko giống nhau đâu
https://sinhvienshare.com/de-thi-hsg-toan-6-cap-huyen-2018-2019-phong-gddt-thuan-thanh/
Câu 1. ( 2,0 điểm)
Cho A = 2 + 22 + 23 + 24 + . . . + 220. Tìm chữ số tận cùng của A.
Câu 2. ( 1,0 điểm)
Số tự nhiên n có 54 ước. Chứng minh rằng tích các ước của n bằng n27.
Câu 3. ( 1,5 điểm)
Chứng minh rằng: n( n +1)( 2n +1)( 3n + 1)( 4n +1) chia hết cho 5 với mọi số tự nhiên n.
Câu 4. ( 1,0 điểm)
Tìm tất cả các số nguyên tố p và q sao cho các số 7p + q và pq + 11 cũng là các số nguyên tố.
Câu 5. ( 1,5 điểm)
a) Tìm ƯCLN( 7n +3, 8n - 1) với (n €N*). Tìm điều kiện của n để hai số đó nguyên tố cùng nhau.
b) Tìm hai số tự nhiên biết: Hiệu của chúng bằng 84, ƯCLN của chúng bằng 28 và các số đó trong khoảng từ 300 đến 440.
Câu 6. ( 1,0 điểm)
Tìm các số nguyên x, y sao cho: xy – 2x - y = -6.
Câu 7. ( 2,0 điểm)
Cho xAy, trên tia Ax lấy điểm B sao cho AB = 5 cm. Trên tia đối của tia Ax lấy điểm D sao cho AD = 3 cm, C là một điểm trên tia Ay.
. Biết AK = 1 cm (K thuộc BD). Tính BK.
SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH ĐỒNG THÁP ĐỀ CHÍNH THỨC (Đề gồm có 01 trang) |
KIỂM TRA KHẢO SÁT HỌC SINH ĐỘI TUYỂN Môn kiểm tra: TOÁN – LỚP 6 Thời gian: 150 phút (không kể thời gian phát đề) |
Câu I: (4.0 điểm). Thực hiện phép tính
1)
2)
Câu II: (4.0 điểm)
1) So sánh P và Q
Biết và
2) Tìm hai số tự nhiên a và b, biết: BCNN(a, b) = 420; ƯCLN(a, b) = 21 và a + 21 = b.
Câu III: (4.0 điểm)
1) Chứng minh rằng: Nếu 7x + 4y ⋮ 37 thì 13x +18y ⋮ 37
2) Cho
Tính B – A
Câu IV. (6.0 điểm)
Cho xÂy, trên tia Ax lấy điểm B sao cho AB = 6 cm. Trên tia đối của tia Ax lấy điểm D sao cho AD = 4 cm.
1) Tính BD.
2) Lấy C là một điểm trên tia Ay. Biết BĈD = 80o, BĈA = 45o. Tính AĈD
3) Biết AK = 2 cm (K thuộc BD). Tính BK
Câu V: (2.0 điểm)
1) Tìm các số tự nhiên x, y sao cho:
2) Tìm số tự nhiên n để phân số đạt GTLN. Tìm giá trị lớn nhất đó