K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2021

1.

a, Có \(C_{12}^4=495\) cách chọn 4 viên bi trong 12 viên.

b, Trước hết chọn mỗi màu một viên có \(3.4.5=60\) cách chọn.

Chọn thêm 1 viên trong 9 viên còn lại có 9 cách chọn.

\(\Rightarrow\) Có \(60.9=540\) cách chọn 4 viên bi có đủ 3 màu.

c, Có \(C_3^2\) cách chọn 2 viên bi màu vàng.

Có \(C_{10}^2\) cách chọn 2 viên bi còn lại.

\(\Rightarrow\) Có \(C_3^2.C_{10}^2=135\) cách chọn 4 viên bi có đủ 2 viên màu vàng.

d, Có \(C_4^2\) cách chọn 2 viên bi màu đỏ.

Có \(C_{10}^2\) cách chọn 2 viên bi còn lại.

\(\Rightarrow\) Có \(C_3^2.C_{10}^2=135\) cách chọn 4 viên bi có ít nhất 2 viên bi màu đỏ.

14 tháng 9 2021

2.

Có 30 câu tất cả nhưng có đến 15 câu dễ, 15 câu trung bình, 5 câu khó?

27 tháng 12 2020

Không gian mẫu là 15C4 = 1365.

Lấy từ hộp 4 viên có đủ 3 màu. 

4C2.5C1.6C1 + 4C1.5C2.6C1 + 4C1.5C1.6C2 = 720

=> P = 1 - 720/1365

10 tháng 7 2018

Đáp án A

Lấy ngẫu nhiên 3 viên bi trong 12 viên bi có

Gọi X là biến cố “3 bi được chọn có đủ 3 màu”

Lấy 1 viên bi màu đỏ trong 3 bi đỏ có 3 cách.

Lấy 1 viên bi màu xanh trong 4 bi xanh có 4 cách.

Lấy 1 viên bi màu vàng trong 5 bi vàng có 5 cách.

Suy ra số kết quả thuận lợi cho biến cố X là

n(X) = 3.4.5 = 60

10 tháng 7 2021

 

a, Số cách chọn 6 viên bất kì là \(C_{23}^6=100947\) cách

Số cách chọn 6 viên chỉ màu vàng là \(C_8^6=28\) cách

Số cách chọn 6 viên chỉ màu xanh là \(C_{10}^6=210\) cách

\(\Rightarrow\) có \(100947-28-210=100709\) cách thỏa mãn.

b, Số cách chọn 6 viên có đủ 3 màu là \(5.8.10=400\)

Số cách chọn 6 viên bất kì là \(C_{23}^6=100947\)

\(\Rightarrow\) có \(100947-400=100547\) cách thỏa mãn.

1 tháng 5 2017

Chọn D

Chọn ngẫu nhiên 4 viên bi từ hộp có 12 viên bi thì có 

Số cách lấy để được đủ ba màu là 

Xác suất để 4 viên bi lấy ra có đủ ba màu bằng


27 tháng 12 2021

TH1: 4 viên được lấy chỉ gồm 2 màu đỏ và trắng.

\(\Rightarrow\) Có \(C^4_7\) cách chọn.

TH2: 4 viên được lấy chỉ gồm 2 màu đỏ và vàng.

\(\Rightarrow\) Có \(C^4_8\) cách chọn.

TH3: 4 viên được lấy chỉ gồm 2 màu trắng và vàng.

\(\Rightarrow\) Có \(C^4_9\) cách chọn.

TH2 và TH3 đã bao gồm TH lấy 4 viên chỉ có màu trắng và 4 viên chỉ có màu vàng.

\(\Rightarrow\) Có \(C^4_7+C^4_8+C^4_9-C^4_4-C^4_5=225\) cách chọn ra 4 viên bi không đủ ba màu.

23 tháng 5 2017

Sử dụng phương pháp gián tiếp:

Lấy ra 9 viên bi trong 15 viên bi bất kỳ, có    C 15 9 cách.

Trường hợp 1: lấy 9 viên bi chỉ có 2 màu là xanh và đỏ, có C 11 9   cách.

Trường hợp 2: lấy 9 viên bi chỉ có 2 màu là xanh và vàng, có C 9 9   cách.

Trường hợp 3: lấy ra 9 viên bi chỉ có màu đỏ và vàng, có C 10 9   cách.

Vậy có : C 15 9 - ( C 11 9 + C 9 9 + C 10 9 ) = 4984 cách.

Chọn C.

13 tháng 1 2018

NV
21 tháng 12 2022

a.

Có \(C_{17}^5\) cách lấy 5 viên bi tùy ý từ 17 viên bi

b.

Lấy 1 bi trắng từ 7 bi trắng, 2 bi xanh từ 4 bi xanh và 2 bi đỏ từ 6 bi đỏ

Số cách lấy là: \(C_7^1.C_4^2.C_6^2\) cách

c.

Các trường hợp thỏa mãn: 1 trắng 1 đỏ 3 xanh, 1 trắng 2 đỏ 2 xanh, 1 trắng 3 đỏ 1 xanh, 2 trắng 1 đỏ 2 xanh, 2 trắng 2 đỏ 1 xanh

Số cách lấy là:

\(C_7^1C_6^1C_4^3+C_7^1C_6^2C_4^2+C_7^1C_6^3C_4^1+C_7^2C_6^1C_4^2+C_7^2C_6^2C_4^1\) cách

Thầy có thể giải thích cụ thể hơn về câu a được không thưa thầy?