Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Giả sử khi rót lượng nước m từ bình 1 sang bình 2, nhiệt độ cân bằng của bình 2 là t nên ta có phương trình cân bằng:
m.(t - t1) = m2.(t2 - t) (1)
Tương tự lần rót tiếp theo nhiệt độ cân bằng ở bình 1 là t' = 21,950C và lượng nước trong bình 1 lúc này chỉ còn (m1 - m) nên ta có phương trình cân bằng:
m.(t - t') = (m1 - m).(t' - t1) (2)
Từ (1) và (2) ta có pt sau:
m2.(t2 - t) = m1.(t' - t1)
\(t=\frac{m_2t_2\left(t'-t_1\right)}{m_2}\) (3)
Thay (3) vào (2) tính toán ta rút phương trình sau:
\(m=\frac{m_1m_2\left(t'-t_1\right)}{m_2\left(t_2-t_1\right)-m_1\left(t'-t_1\right)}\) (4)
Thay số vào (3) và (4) ta tìm được: t = 590C và m = 0,1 Kg.
b/ Lúc này nhiệt độ của bình 1 và bình 2 lần lượt là 21,950C và 590C bây giờ ta thực hiện rót 0,1Kg nước từ bình 1 sang bình 2 thì ta có thể viết được phương trình sau:
m.(T2 - t') = m2.(t - T2)
\(T_2=\frac{m_1t'+m_2t}{m+m_2}=58,12^0C\)
Bây giờ ta tiếp tục rót từ bình 2 sang bình 1 ta cũng dễ dàng viết được phương trình sau:
m.(T1 - T2) = (m1 - m).(t - T1)
\(T_1=\frac{mT_2+\left(m_1-m\right)t'}{m_1}=23,76^oC\)
Đáp án : B
- Giả sử khi rót lượng nước m (kg) từ bình 1 sang bình 2, nhiệt độ cân bằng của bình 2 là t nên ta có phương trình cân bằng:
m.c.(t - t 1 ) = m 2 .c.( t 2 - t)
⇒ m.(t - t 1 ) = m 2 .( t 2 - t) (1)
- Tương tự lần rót tiếp theo nhiệt độ cân bằng ở bình 1 là t ' = 21,95°C và lượng nước trong bình 1 lúc này chỉ còn ( m 1 - m) nên ta có phương trình cân bằng:
m.c(t - t ' ) = ( m 1 - m).c( t ' - t 1 )
⇒ m.(t - t ' ) = ( m 1 - m).( t ' - t 1 )
⇒ m.(t – t ' ) = m 1 .( t ' – t1) – m.( t ' – t 1 )
⇒ m.(t – t ' ) + m.( t ' – t1) = m 1 ( t ' – t 1 )
⇒ m.(t – t 1 ) = m 1 .( t ' – t 1 ) (2)
- Từ (1) và (2) ta có pt sau:
m 2 .( t 2 - t) = m 1 .( t ' - t 1 )
⇒ 4.(60 – t) = 2.(21,95 – 20)
⇒ t = 59,025°C
- Thay vào (2) ta được
m.(59,025 – 20) = 2.(21,95 – 20)
⇒ m = 0,1 (kg)
Ta có phương trình cân bằng nhiệt ( lần 1)
\(Q_{toả_1}=Q_{thu_1}\\ \Leftrightarrow4c\left(60-t_{cb_1}\right)=mc\left(t_{cb_1}-20\right)\\ \Leftrightarrow t_{cb_1}=\dfrac{240+20m}{m+4}\left(1\right)\)
Ta có phương trình cân bằng nhiệt ( lần 2 )
\(Q_{toả_2}=Q_{thu_2}\\ \Leftrightarrow mc\left(t_{cb_1}-21,95\right)=\left(2-m\right)c.1,95\\ \Leftrightarrow t_{cb_1}=\dfrac{3,9+20m}{m}\left(2\right)\)
Từ (1) và (2)
\(\Leftrightarrow\dfrac{240+20m}{m+4}=\dfrac{3,9+20m}{m}\)
Giải phương trình trên ta được
\(\Rightarrow m\approx0,1kg\)
Thay m = 0,1kg ta được
\(\Leftrightarrow t_{cb}=59^o\)
Ta có phương trình cân bằng nhiệt lần 3
\(Q_{toả_3}=Q_{thu_3}\\ \Leftrightarrow4c\left(59-t_{cb}\right)=0,1c\left(t_{cb}-21,95\right)\\ \Rightarrow t_{cb}=58,1\)
a/ Giả sử khi rót lượng nước m từ bình 1 sang bình 2, nhiệt độ cân bằng của bình 2 là t nên ta có phương trình cân bằng:
m.(t - t1) = m2.(t2 - t) (1)
Tương tự lần rót tiếp theo nhiệt độ cân bằng ở bình 1 là t' = 21,950C và lượng nước trong bình 1 lúc này chỉ còn (m1 - m) nên ta có phương trình cân bằng:
m.(t - t') = (m1 - m).(t' - t1) (2)
Từ (1) và (2) ta có pt sau:
m2.(t2 - t) = m1.(t' - t1)
t=m2t2(t′−t1) / m2 (3)
Thay (3) vào (2) tính toán ta rút phương trình sau:
m=m1m2(t′−t1) / m2(t2−t1)−m1(t′−t1) (4)
Thay số vào (3) và (4) ta tìm được: t = 590C và m = 0,1 Kg.
b/ Lúc này nhiệt độ của bình 1 và bình 2 lần lượt là 21,950C và 590C bây giờ ta thực hiện rót 0,1Kg nước từ bình 1 sang bình 2 thì ta có thể viết được phương trình sau:
m.(T2 - t') = m2.(t - T2)
T2=m1t′+m2t / m+m2=58,120C
Bây giờ ta tiếp tục rót từ bình 2 sang bình 1 ta cũng dễ dàng viết được phương trình sau:
m.(T1 - T2) = (m1 - m).(t - T1)
T1=mT2+(m1−m)t′ / m1=23,760C
dấu / là phân số
a/ Giả sử khi rót lượng nước m từ bình 1 sang bình 2, nhiệt độ cân bằng của bình 2 là t nên ta có phương trình cân bằng:
m.(t - t1) = m2.(t2 - t) (1)
Tương tự lần rót tiếp theo nhiệt độ cân bằng ở bình 1 là t' = 21,950C và lượng nước trong bình 1 lúc này chỉ còn (m1 - m) nên ta có phương trình cân bằng:
m.(t - t') = (m1 - m).(t' - t1) (2)
Từ (1) và (2) ta có pt sau:
m2.(t2 - t) = m1.(t' - t1)
t=m2t2(t′−t1) / m2 (3)
Thay (3) vào (2) tính toán ta rút phương trình sau:
m=m1m2(t′−t1) / m2(t2−t1)−m1(t′−t1) (4)
Thay số vào (3) và (4) ta tìm được: t = 590C và m = 0,1 Kg.
b/ Lúc này nhiệt độ của bình 1 và bình 2 lần lượt là 21,950C và 590C bây giờ ta thực hiện rót 0,1Kg nước từ bình 1 sang bình 2 thì ta có thể viết được phương trình sau:
m.(T2 - t') = m2.(t - T2)
T2=m1t′+m2t / m+m2=58,120C
Bây giờ ta tiếp tục rót từ bình 2 sang bình 1 ta cũng dễ dàng viết được phương trình sau:
m.(T1 - T2) = (m1 - m).(t - T1)
T1=mT2+(m1−m)t′ / m1=23,760C
dấu / này làn phân số
gọi:
t là nhiệt độ cân bằng sau khi rót từ bình 1 sang 2
t' là nhiệt độ cân bằng sau khi rót từ bình 2 sang 1
m là khối lượng nước rót
ta có:
rót lần đầu từ bình 1 sang bình 2 thì phương trình cân bằng nhiệt là:
Qtỏa=Qthu
\(\Leftrightarrow mC\left(t_1-t\right)=m_2C\left(t-t_2\right)\)
\(\Leftrightarrow m\left(40-t\right)=2\left(t-20\right)\)
\(\Leftrightarrow40m-mt=2t-40\)
\(\Leftrightarrow2t+mt=40m+40\)
\(\Leftrightarrow t=\frac{40\left(m+1\right)}{2+m}\left(1\right)\)
rót tiếp tục từ bình 2 sang bình 1 thì phương trình cân bằng nhiệt là:
Qtỏa=Qthu
\(\Leftrightarrow\left(m_1-m\right)C\left(t_1-t'\right)=mC\left(t'-t\right)\)
\(\Leftrightarrow\left(4-m\right)\left(40-36\right)=m\left(36-t\right)\)
thế (1) vào phương trình trên ta có:
\(4\left(4-m\right)=m\left(36-\frac{40\left(m+1\right)}{m+2}\right)\)
\(\Leftrightarrow4\left(4-m\right)=m\left(\frac{36\left(m+2\right)-40\left(m+1\right)}{m+2}\right)\)
\(\Leftrightarrow4\left(4-m\right)=m\left(\frac{36m+72-40m-40}{m+2}\right)\)
\(\Leftrightarrow4\left(4-m\right)=\frac{m\left(-4m+32\right)}{m+2}\)
\(\Leftrightarrow\left(16-4m\right)\left(m+2\right)=-4m^2+32m\)
\(\Leftrightarrow16m+32-4m^2-8m+4m^2-32m=0\)
\(\Leftrightarrow-24m+32=0\Rightarrow m=\frac{4}{3}kg\)
Ta có phương trình cân bằng nhiệt lần 1
\(Q_{tỏa}=Q_{thu}\\ \Leftrightarrow4c\left(60-t_{cb_1}\right)=mc\left(t_{cb_1}-20\right)\\ \Leftrightarrow240-4t_{cb_1}=mt_{cb_1}-20m\\ \Leftrightarrow t_{cb_1}=\dfrac{240+20m}{m+4}\left(1\right)\)
Ta có phương trình cân bằng nhiệt lần 2
\(Q_{tỏa}=Q_{thu}\\ \Leftrightarrow mc\left(t_{cb_1}-21,95\right)=2-mc.1,95\\ \Leftrightarrow mt_{cb_1}=3,9-1,95m+21,95m\\ \Leftrightarrow t_{cb_1}=\dfrac{3,9+20m}{m}\left(2\right)\)
Từ (1) và (2)
\(\dfrac{240+20m}{m+4}=\dfrac{3,9+20m}{m}\Rightarrow240m+20m^2=3,9m+20m^2+15,6+80m\\ \Leftrightarrow m\approx0,1\)
Khi trút một lượng nước m từ B1 sang B2 thì m kg nước tỏa nhiệt để hạ nhiệt độ từ t1 (t độ đó) xuống t3, m2 kg nước thu nhiệt để tăng nhiệt độ từ t2 đến t3.
Do nhiệt hao phí không đáng kể ( câu này phải lập luận) có phương trình cân bằng nhiệt
Qtỏa = Qthu
<=> m(t1 - t3) = m2(t3 - t2) (đã rút gọn Cn)
<=> m(40- t3) = 1( t3-20)
<=> m= (t3-20)/(40-t3) (*)
Lúc này ở B1 còn (m1-m) kg nước có nhiệt độ t1=40, ở B2 có ( m2+m) kg nước có nhiệt độ t3
Khi trút một lượng nước m từ B2 về B1 thì (m1-m) kg nước tỏa nhiệt để hạ nhiệt độ từ t1 xuống 38 độ, m kg nước thu nhiệt để tăng nhiệt độ từ t3 lên 38 độ.
(lập luận như trên) có phương trình cần bằng nhiệt
Qtỏa = Q thu
<=>(m1-m)(t1-38) = m(38 - t3)
<=>(2-m)2 = m(38-t3)
<=>4-2m = m(38-t3)
<=>m(38 -t3 +2) =4
<=>m= 4/(40 -t3) (~)
Từ (*) và (~) ta có
t3 -20 = 4
<=>t3 = 24
Suy ra nhiệt độ cân bằng ở bình 2 là 24 độ
Thay t3 = 24 độ vào một trong hai phương trình trên sẽ tìm được m = 0.25 kg
Xét cả quá trình :
Nhiệt lượn bình 1 tỏa ra :
\(Q=m_1.C.2=16800J\)
Nhiệt lượng này truyền cho bình 2.
\(Q=m_2.C.\left(t-20\right)\)
Xét lần trút từ bình 1 sang bình 2.
\(mC\left(40-24\right)=m_2C\left(24-20\right)\)
Tính được \(0,66666kg\)
Gọi nhiệt độ bình thứ nhất sau khi đã cân bằng là \(t_1^oC\).
Phương trình cân bằng nhiệt sau khi rót lần thứ nhất:
\(m\cdot C\cdot\left(40-t_1\right)=3\cdot C\cdot\left(t_1-20\right)J\)
Phương trình cân bằng nhiệt sau khi rót lần thứ hai:
\(\left(4-m\right)C\cdot\left(38-40\right)=m\cdot C\cdot\left(t_1-38\right)J\)
\(\Rightarrow\left\{{}\begin{matrix}m\cdot\left(40-t_1\right)=3\left(t_1-20\right)\\\left(4-m\right)\cdot\left(38-40\right)=m\cdot\left(t_1-38\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}40m-mt_1=3t_1-60\\2m-8=mt_1-38m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}40m=mt_1+3t_1-60\\40m=8+mt_1\end{matrix}\right.\)
\(\Rightarrow mt_1+3t_1-60=8+mt_1\Rightarrow t_1=22,67^oC\)
\(\Rightarrow m=\dfrac{3\left(t_1-20\right)}{40-t_1}=\dfrac{3\left(22,67-20\right)}{40-22,67}=0,4622kg=462,2g\)