Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) Gọi 3 số tự nhiên liên tiếp đó lần lượt là: a, a + 1, a + 2 ( a,a+1,a+2 thuộc N )
Xét tổng a, a + 1, a + 2 ta có:
\(a+\left(a+1\right)+\left(a+2\right)=\left(a+a+a\right)+\left(1+2\right)=3a+3=3\left(a+1\right)⋮3\)
\(\Rightarrowđpcm\)
b) Gọi 4 số tự nhiên liên tiếp đó lần lượt là a, a + 1, a + 2, a + 3 ( a,a+1,a+2,a+3 thuộc N )
Xét tổng của a, a + 1, a + 2, a + 3 ta có:
\(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)\)
\(=\left(a+a+a+a\right)+\left(1+2+3\right)\)
\(=4a+6\)
\(\Rightarrowđpcm\)
c) Gọi 5 số tự nhiên đó lần lượt là: a, a + 1, a + 2, a + 3, a + 4 ( a, a+1, a+2 , a+3, a+4 thuộc N )
Xét tổng của a, a + 1, a + 2, a + 3, a + 4 ta có:
\(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)\)
\(=\left(a+a+a+a+a\right)+\left(1+2+3+4\right)\)
\(=5a+10\)
\(=5\left(a+2\right)⋮5\)
\(\Rightarrowđpcm\)
a) Gọi ba số tự nhiên liên tiếp là a, a + 1 , a + 2 , a\(\in\)N. Khi đó a + (a+1) + (a+2) = 3a + a
Mà 3a \(⋮\) 3, 3 \(⋮\) 3 \(\Rightarrow\) (3a + a) \(⋮3\left(đpcm\right)\)
b) \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)=4a+6\)
Mà \(4a⋮4,6⋮̸\) 4, nên (4a+6) \(⋮̸\) 4 (đpcm)
c) a + (a + 1) + (a + 2) + (a + 3) + (a+4) = 5a + 10
Mà 5a \(⋮\) 5 và 10 \(⋮5nên\left(5a+10\right)⋮5\left(đpcm\right)\)
Giải
Có. Gọi A = 2 . 3 . 4 ... . 1001. Các số A + 2, A + 3, ..., A + 1001 là 1000 số tự nhiên liên tiếp và rõ ràng đều là hợp số ( đpcm ).
Một vấn đề được đặt ra : Có những khoảng rất lớn các số tự nhiên liên tiếp đều là hợp số. Vậy có thể đến một lúc nào đó không còn số nguyên tố nữa không ? Có số nguyên tố cuối cùng không ? Từ thế kỉ III trước Công nguyên, nhà toán học cổ Hy Lạp Ơ - clit ( Euclide ) đã chứng minh rằng : Tập hợp các số nguyên tố là vô hạn.
Gọi A=2.3.4.5.6.7.8.9.........1001
Khi đó A+2;....;A+1000;A+1001 là các số tự nhiên liên tiếp
TA có
A+2=2.3....1001+2=2(3.4.5.6....1001+1) (hợp số)
A+3=2.3.4...1001+3=3(2.4......1001+1) (hợp số)
...............
A+1001=2.3.4....1001+1001=1001(2.3...100) hợp số
Vậy có tồn tại dãy 1000 số tự nhiên liên tiếp đều là hợp số
Câu 1:
36x28+36x82+64x69-64x41=36x(28+82)+64x(69-41)
=36x110+64x28
=3960+1792
=5752
Gọi 1000 số tự nhiên liên tiếp dầu tiên là a , a + 1 , a + 2 , .... , a+1000.
Theo đề bài ta có :
a + a + 1 + a + 2 + a +3 +... + a + 1000
1000a + ( 1 + 2 + 3 + ... + 1000 ) từ 1 đến 1000 có 1000 số tự nhiên
1000a + 500500
Ta thấy :
1000a là hợp số , 500500 là hợp số
Vậy : 1000 số tự nhiên liên tiếp đầu tiên là hợp số.
Gọi 1000 số tự nhiên liên tiếp dầu tiên là a , a + 1 , a + 2 , .... , a+1000.
Theo đề bài ta có :
a + a + 1 + a + 2 + a +3 +... + a + 1000
1000a + ( 1 + 2 + 3 + ... + 1000 ) từ 1 đến 1000 có 1000 số tự nhiên
1000a + 500500
Ta thấy :
1000a là hợp số , 500500 là hợp số
Vậy : 1000 số tự nhiên liên tiếp đầu tiên là hợp số.
Gọi A=2.3.4.5.6.7.8.9.........1001
Khi đó A+2;....;A+1000;A+1001 là các số tự nhiên liên tiếp
TA có
A+2=2.3....1001+2=2(3.4.5.6....1001+1) (hợp số)
A+3=2.3.4...1001+3=3(2.4......1001+1) (hợp số)
...............
A+1001=2.3.4....1001+1001=1001(2.3...100) hợp số
Vậy có tồn tại dãy 1000 số tự nhiên liên tiếp đều là hợp số
a) Hai số tự nhiên liên tiếp là số nguyên tố là 2 và 3.
b) Ba số lẻ liên tiếp đều là số nguyên tố: 3; 5; 7
Có như : 1001! + 2 ; 1001! + 3 ; 1001! + 4 ; .......... 1001! + 1001