Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
Ta có: \(3^{n+2}+3^n=3^n\left(3^2+1\right)=10.3^n⋮10\)
\(2^{n+2}+2^n=2^n\left(4+1\right)=5.2^n=10.2^{n-1}⋮10\)
=> \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10
=>(3^n+2)+(3^n)-(2^n+2)-(2^n)=3^n((3^2)+1)-2^n((2^2)+1)=(3^n)*10-(2^n)*5=(3^n)*10-(2^n-1)*5*2=(3^n)*10-(2^n-1)*10=10*((3^n)-(2^n-1) chia hết cho 10
=>(3^n+2)-(2^n+2)+(3^n)-(2^n)chia hết cho 10
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)+\left(-2^{n+2}-2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
Vậy 3n+2 - 2n+2 + 3n - 2n chia hết cho 10
Ta có 3n+2-2n+2+3n-2n
=3n.9-2n.5+3n-2n
= 3n.(9+1)-2n.(4+1)
=3n.10-2n.5=3n.10-2n-1.10
Do 3n.10 chia hết cho 10 với mọi số nguyên dương n
2n-1.10 chia hết cho 10 với mọi số nguyên dương n
Nên 3n+2-2n+2+3n-2n chia hết cho 10 với mọi số nguyên dương n
(\(3^{n+2}+3^n\))-\(\left(2^{n+2}+2^n\right)\)=\(3^n\left(3^2+1\right)-2^n\left(4+1\right)\)=\(3^n\cdot10-3^{n-1}\left(5\cdot2\right)=10\left(3^n-3^{n-1}\right)\). Vì 10 chia hết cho 10 nên \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10
\(3^{n+2}-2^{n+2}+3^n-2^n=3^{n+2}+3^n-2^{n+2}+2^n\)Mà \(3^{n+2}+3^n=9.3^n+3^n=10.3^n\left(10.3^n⋮10\right)\)
Và \(2^{n+2}+2^n=4.2^n+2^n=5.2^n\)( Cũng chia hết cho 10 )
\(\Rightarrow3^{n+2}+2^{n+2}+3^n-2^n⋮10\left(đpcm\right)\)
toán hsg lớp 7:chứng minh rằng với mọi số nguyên dương n thì : 3^n+2 -2^n+2 +3^n-2^n chia hết cho 10
=\(3^n\).\(3^2\)-\(2^n\).\(2^2\)+\(3^n\)-\(2^n\)
=\(^{3^n}\).9 - \(2^n\).4 +\(^{3^n}\)- \(2^n\)
=10 .\(3^n\)-5.\(2^n\)
=10.\(3^n\)-5.2.\(2^{n-1}\)
=10 .(\(3^n\)-\(2^n\) )
=> chia hết cho 10
Ta có: \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)\)
\(=3^n\cdot\left(3^2+1\right)-2^n\cdot\left(2^2+1\right)\)
\(=3^n\cdot10-2^n\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot2\cdot5\)
\(=3^n\cdot10-2^{n-1}\cdot10\)
\(=\left(3^n-2^{n-1}\right)\cdot10⋮10\left(dpcm\right)\)
bạn vào câu hỏi tương tự nha
Chắc chắn rồi ko cần chững minh