K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
25 tháng 12 2019
Áp dụng bđt AM-GM ta có:
\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=x\)
\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge2\sqrt{\frac{y^2}{x+z}.\frac{x+z}{4}}=y\)
\(\frac{z^2}{y+x}+\frac{y+x}{4}\ge2\sqrt{\frac{z^2}{y+x}.\frac{y+x}{4}}=z\)
Cộng các vế của các bđt trên ta được:
\(P+\frac{x+y+z}{2}\ge x+y+z\)
\(\Rightarrow P\ge\frac{x+y+z}{2}=1\)
Dấu"="Xảy ra \(\Leftrightarrow x=y=z=\frac{2}{3}\)
KN
26 tháng 12 2019
Áp dụng Svac - xơ:
\(P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{2^2}{2.2}=1\)
(Dấu "="\(\Leftrightarrow x=y=z=\frac{2}{3}\))
DT
0
B
10 tháng 8 2019
Yêu lớp 6B nhiều không còn cảm xúc nào có thể xen lẫn được tình cảm đó cả gửi nhầm nơi rồi ak nha.
Lần sau đặt đúng môn nhé :D
Ta có: \(ab=1\Leftrightarrow b=\frac{1}{a}\)
Theo đề:
\(\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}=\frac{1}{a}+\frac{1}{\frac{1}{a}}+\frac{2}{a+\frac{1}{a}}=\frac{1}{a}+a+\frac{2}{a+\frac{1}{a}}\)
Áp dụng BĐT AM-GM:
\(\Rightarrow\frac{1}{a}+a\ge2\sqrt{1}=2\left(1\right)\Leftrightarrow\frac{2}{a+\frac{1}{a}}\ge\frac{2}{2}=1\left(2\right)\)
Cộng theo vế `(1)` và `(2)`
\(\Rightarrow\frac{1}{a}+a+\frac{2}{a+\frac{1}{a}}\ge2+1=3\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}\ge3\)