Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
\(\dfrac{1}{\left(k+1\right)\sqrt{k}+k\left(\sqrt{k+1}\right)}\) \(=\dfrac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)^2k-k^2\left(k+1\right)}\)
\(=\dfrac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)k\left(k+1-k\right)}=\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\)
Áp dụng vào biểu thức ta có:
\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}\) \(+...+\dfrac{1}{2015\sqrt{2014}+2014\sqrt{2015}}\)
\(=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{2014}}-\dfrac{1}{\sqrt{2015}}\)
\(=1-\dfrac{1}{\sqrt{2015}}\)
Với \(\forall a\in N\left(a\ne0\right)\cdot\),ta có:\(\sqrt{1+a^2+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}=\sqrt{\dfrac{\left(a^2+1\right)\left(a^2+2a+1\right)+a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}=\sqrt{\dfrac{\left(a^2+1\right)^2+2a\left(a^2+1\right)+a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}=\sqrt{\dfrac{\left(a^2+a+1\right)^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}=\dfrac{a^2+a+1}{a+1}+\dfrac{a}{a+1}=\dfrac{\left(a+1\right)^2}{a+1}=a+1\in Z\)(Vì a là số tự nhiên)
Thay a=2014 vào thì ta có: B=2014+1=2015 là số nguyên
\(VT=\frac{2015-1}{\sqrt{2015}}+\frac{2014+1}{\sqrt{2014}}=\sqrt{2015}-\frac{1}{\sqrt{2015}}+\sqrt{2014}+\frac{1}{\sqrt{2014}}\)
\(>\sqrt{2014}+\sqrt{2015}\)(do \(\frac{1}{\sqrt{2014}}-\frac{1}{\sqrt{2015}}>0\))
Ta có:
\(\dfrac{1}{\sqrt{a}-\sqrt[]{a+1}}=\dfrac{\sqrt{a}+\sqrt{a+1}}{a-a+1}=\sqrt{a}+\sqrt{a+1}\)
\(\Rightarrow\dfrac{1}{\sqrt{2013}-\sqrt{2014}}-\dfrac{1}{\sqrt{2014}-\sqrt{2015}}=\sqrt{2013}+\sqrt{2014}-\sqrt{2014}-\sqrt{2015}=\sqrt{2013}-\sqrt{2015}\)
Phương trình tương đương
\(\left(\sqrt{x+2014}-\sqrt{y+2014}\right)+\left(\sqrt{2015-x}-\sqrt{2015-y}\right)+\left(\sqrt{2014-x}+\sqrt{2014-y}\right)=0\)
\(\Leftrightarrow\dfrac{x-y}{\sqrt{x+2014}+\sqrt{y+2014}}-\dfrac{x-y}{\sqrt{2015-x}+\sqrt{2015-y}}-\dfrac{x-y}{\sqrt{2014-x}-\sqrt{2014-y}}=0\)
\(\Rightarrow x=y\)
Ta có : \(\frac{2014}{\sqrt{2015}}\)+ \(\frac{2015}{\sqrt{2014}}\) = \(\frac{2015-1}{\sqrt{2015}}\) + \(\frac{2014+1}{\sqrt{2014}}\)
= \(\sqrt{2015}\) + \(\sqrt{2014}\) + \(\frac{1}{\sqrt{2014}}\) - \(\frac{1}{\sqrt{2015}}\)
Vì \(\sqrt{2014}\) < \(\sqrt{2015}\) \(\Rightarrow \) \(\frac{1}{\sqrt{2014}}\)>\(\frac{1}{\sqrt{2015}}\) \(\Rightarrow \) \(\frac{1}{\sqrt{2014}}\)-\(\frac{1}{\sqrt{2015}}\) > 0
Nên \(\sqrt{2015}\) + \(\sqrt{2014}\) + \(\frac{1}{\sqrt{2014}}\) - \(\frac{1}{\sqrt{2015}}\) > \(\sqrt{2015}\) + \(\sqrt{2014}\)
Hay \(\frac{2014}{\sqrt{2015}}\)+ \(\frac{2015}{\sqrt{2014}}\) > \(\sqrt{2014} + \sqrt{2015}\)