Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\frac{3x+2}{5x+7}=\frac{3x-1}{5x+1}\)
\(\Leftrightarrow\left(3x+2\right)\left(5x+1\right)=\left(5x+7\right)\left(3x-1\right)\)
\(\Leftrightarrow3x\left(5x+1\right)+2\left(5x+1\right)=5x\left(3x-1\right)+7\left(3x-1\right)\)
\(\Leftrightarrow15x^2+3x+10x+2=15x^2-5x+21x-7\)
\(\Leftrightarrow15x^2-15x^2+3x+10x+5x-21x=-7-2\)
\(\Leftrightarrow-3x=-9\)
\(\Leftrightarrow x=3\)
Vậy x = 3
b) Ta có: \(\frac{x+1}{2x+1}=\frac{0,5x+2}{x+3}\Leftrightarrow\left(x+1\right)\left(x+3\right)=\left(2x+1\right)\left(0,5x+2\right)\)
\(\Leftrightarrow x\left(x+3\right)+\left(x+3\right)=2x\left(0,5x+2\right)+\left(0,5x+2\right)\)
\(\Leftrightarrow x^2+3x+x+3=x^2+4x+0,5x+2\)
\(\Leftrightarrow x^2-x^2+3x+x-4x-0,5x=2-3\)
\(\Leftrightarrow-0,5x=-1\Leftrightarrow x=2\)
Vậy x = 2
a/ đk: x khác -7/5 ; x khác -1/5
pt <=> \(\dfrac{\left(3x+2\right)\left(5x+1\right)}{\left(5x+7\right)\left(5x+1\right)}=\dfrac{\left(3x-1\right)\left(5x+7\right)}{\left(5x+7\right)\left(5x+1\right)}\)
\(\Rightarrow15x^2+13x+2=15x^2+16x-7\)
\(\Leftrightarrow15x^2+13x-15x^2-16x^2=-7-2\)
\(\Leftrightarrow-3x=-9\Leftrightarrow x=3\left(tm\right)\)
vậy x = 3
b/ đk: x khác -1/2; x khác -3
pt <=> \(\dfrac{\left(x+1\right)\left(x+3\right)}{\left(2x+1\right)\left(x+3\right)}=\dfrac{\left(0,5x+2\right)\left(2x+1\right)}{\left(2x+1\right)\left(x+3\right)}\)
\(\Rightarrow x^2+4x+3=x^2+4,5x+2\)
\(\Leftrightarrow x^2+4x-x^2-4,5x=2-3\)
\(\Leftrightarrow-0,5x=-1\Leftrightarrow x=2\left(tm\right)\)
vậy x = 2
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{3x+2}{5x+7}=\dfrac{3x-1}{5x+1}=\dfrac{\left(3x+2\right)-\left(3x-1\right)}{\left(5x+7\right)-\left(5x+1\right)}=\dfrac{3}{6}=\dfrac{1}{2}\)
\(\Rightarrow2\left(3x+2\right)=5x+7\)
\(\Rightarrow6x+4=5x+7\)
\(\Leftrightarrow x=3\)
Vậy x = 3
b) Ta có: \(\dfrac{0,5x+2}{x+3}=\dfrac{2\left(0,5x+2\right)}{2\left(x+3\right)}=\dfrac{x+4}{2x+6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x+1}{2x+1}=\dfrac{0,5x+2}{x+3}=\dfrac{x+4}{2x+6}=\dfrac{\left(x+4\right)-\left(x+1\right)}{\left(2x+6\right)-\left(2x+1\right)}=\dfrac{3}{5}\)
\(\Rightarrow5\left(x+1\right)=3\left(2x+1\right)\)
\(\Rightarrow5x+5=6x+3\)
\(\Leftrightarrow x=2\)
\(\dfrac{3x+2}{5x-7}=\dfrac{3x-1}{5x+1}\)
\(\Leftrightarrow\left(3x+2\right)\left(5x+1\right)=\left(3x-1\right)\left(5x-7\right)\)
\(\Leftrightarrow15x^2+3x+10x+2=15x^2-21x-5x-7\)
\(\Leftrightarrow15x^2+13x+2=15x^2-26x-7\)
\(\Leftrightarrow15x^2-15x^2-13x-2=26x-7\)
\(\Leftrightarrow-13x-2=26x-7\)
\(\Leftrightarrow26x+13x=7+2\)
\(\Leftrightarrow39x=9\Leftrightarrow x=\dfrac{3}{13}\)
b tương tự
Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu
a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84)
=> 156 - 56x = 24x - 324
=> 24x + 56x = 324 + 156
=> 80x = 480
=> x = 480 : 80 = 6
Vậy x = 6
b) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\2x-\frac{1}{3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=1\\2x=\frac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{5}\\x=\frac{1}{6}\end{matrix}\right.\)
e, \(-\frac{3}{4}-\left|\frac{4}{5}-x\right|=-1\)
\(\Leftrightarrow\left|\frac{4}{5}-x\right|=-\frac{3}{4}-\left(-1\right)\)
\(\Leftrightarrow\left|\frac{4}{5}-x\right|=\frac{1}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{4}{5}-x=\frac{1}{4}\\\frac{4}{5}-x=-\frac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{15}\\x=1,05\end{matrix}\right.\)
Vậy ....
a: \(\Leftrightarrow12x^2-10x-12x^2-28x=7\)
=>-38x=7
hay x=-7/38
b: \(\Leftrightarrow-10x^2-5x+9x^2+6x+x^2-\dfrac{1}{2}x=0\)
=>1/2x=0
hay x=0
c: \(\Leftrightarrow18x^2-15x-18x^2-14x=15\)
=>-29x=15
hay x=-15/29
d: \(\Leftrightarrow x^2+2x-x-3=5\)
\(\Leftrightarrow x^2+x-8=0\)
\(\text{Δ}=1^2-4\cdot1\cdot\left(-8\right)=33>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-1-\sqrt{33}}{2}\\x_2=\dfrac{-1+\sqrt{33}}{2}\end{matrix}\right.\)
e: \(\Leftrightarrow-15x^2+10x-10x^2-5x-5x=4\)
\(\Leftrightarrow-25x^2=4\)
\(\Leftrightarrow x^2=-\dfrac{4}{25}\left(loại\right)\)
1: \(\Leftrightarrow\left(x+1\right)^2=4\)
=>x+1=2 hoặc x+1=-2
=>x=1 hoặc x=-3
2: \(\Leftrightarrow7x-21=5x+25\)
=>2x=46
=>x=23
3: \(\Leftrightarrow x^2+4x+3=x^2+0.5x+4x+2\)
=>4,5x+2=4x+3
=>x=1
a.
\(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=16\)
\(6x^2+21x-2x-7-6x^2+5x-6x+5=16\)
\(\left(6x^2-6x^2\right)+\left(21x-2x+5x-6x\right)-\left(7-5\right)=16\)
\(18x-2=16\)
\(18x=16+2\)
\(18x=18\)
\(x=\frac{18}{18}\)
\(x=1\)
b.
\(\left(10x+9\right)x-\left(5x-1\right)\left(2x+3\right)=8\)
\(10x^2+9x-10x^2-15x+2x+3=8\)
\(\left(10x^2-10x^2\right)-\left(15x-9x-2x\right)+3=8\)
\(-4x=8-3\)
\(-4x=5\)
\(x=-\frac{5}{4}\)
c.
\(\left(3x-5\right)\left(7-5x\right)+\left(5x+2\right)\left(3x-2\right)-2=0\)
\(21x-15x^2-35+25x+15x^2-10x+6x-4-2=0\)
\(\left(15x^2-15x^2\right)+\left(25x+21x-10x+6x\right)-\left(35+4+2\right)=0\)
\(42x=41\)
\(x=\frac{41}{42}\)