K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2017

a=(2+2^2+2^3+2^4)+....+(2^2397+2^2398+2^2399+2^2400)

ta thấy 

môi nhóm đều chia hết cho 15 => a chia het cho 15

7 tháng 9 2017

a, mình nghĩ là \(16^5+2^{15}\)

ta có : \(16^5=2^{20}\)

=>\(16^5+2^{15}=2^{20}+2^{15}\)

=\(2^{15}.2^5+2^{15}\)

\(=2^{15}.\left(2^5+1\right)\)

\(=2^{15}.33\)

mà \(2^{15}.33⋮33\)

\(=>16^5+2^{15}⋮33\)

7 tháng 9 2017

a)Ta thấy: 16^5=2^20

=> A=16^5 + 2^15

= 2^20 + 2^15

= 2^15.2^5 + 2^15

= 2^15(2^5+1)

=2^15.33

số này luôn chia hết cho 33 

b)

14 tháng 9 2017

\(D=5^7+5^{11}+5^{15}+...+5^{4k+3}\)   (1)

Nhân D với 54 ta được:

\(5^4.D=5^{11}+5^{15}+...+5^{4k+7}\)      (2)

Lấy (2) trừ đi (1) ta được:

    \(5^4.D-D=5^{4k+7}-5^7\)

=> \(D=\frac{5^7\left(5^{4k}-1\right)}{5^4-1}\)

14 tháng 9 2017

Thanks co a !

12 tháng 2 2016

*Ta có: 32S=9S=32+34+.....+32002+32004

         9S-3S=8S=32004-1=>S=\(\frac{3^{2004}-1}{8}\)

*S=(30+32+34)+(36+38+310)+.......+(31998+32000+32002)

    =(30+32+34)+36(30+32+34)+..........+31998(30+3234)

     =(30+32+34)(1+36+.....+31998)=91(1+36+...+31998)      mà 91 chia hết cho 7

                             =>S chia hết cho 7

12 tháng 2 2016

a,9S=32+34+36+................+32004

9S-S=(32+34+36+.............+32004)-(30+32+34+.............+32002)

8S=32004-30

S=\(\frac{3^{2004}-1}{8}\)

b,S=(30+32+34)+...........+(31998+32000+32002)

S=13.7+..................+31998.(1+32+34)

S=13.7+............+31998.13.7

S=(13+...........+31996.13).7 chia hết cho 7(đpcm)

26 tháng 6 2017

\(A=17^{18}-17^{16}\\ =17^{16}\cdot\left(17^2-1\right)\\ =17^{16}\cdot\left(289-1\right)\\ =17^{16}\cdot288\\ =17^{16}\cdot18\cdot16⋮18\)

Vậy \(A⋮18\)

\(B=1+3+3^2+...+3^{11}\)

Ta có: \(52=4\cdot13\)

\(B=1+3+3^2+...+3^{11}\\ =\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\\ =1\cdot\left(1+3\right)+3^2\cdot\left(1+3\right)+...+3^{10}\cdot\left(1+3\right)\\ =\left(1+3\right)\cdot\left(1+3^2+...+3^{10}\right)\\ =4\cdot\left(1+3^2+...+3^{10}\right)⋮4\)

Vậy \(B⋮4\)

\(B=1+3+3^2+...+3^{11}\\ =\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\\ =1\cdot\left(1+3+3^2\right)+3^3\cdot\left(1+3+3^2\right)+...+3^9\cdot\left(1+3+3^2\right)\\ =\left(1+3+3^2\right)\cdot\left(1+3^3+...+3^9\right)\\ =13\cdot\left(1+3^3+...+3^9\right)⋮13\)

Vậy \(B⋮13\)

\(4\)\(13\) là hai số nguyên tố cùng nhau nên tao có \(B⋮4\cdot13\Leftrightarrow B⋮52\)

Vậy \(B⋮52\)

\(C=3+3^3+3^5+...3^{31}\)

\(C=3+3^3+3^5+...+3^{31}\\ =\left(3+3^3\right)+\left(3^5+3^7\right)+...+\left(3^{29}+3^{31}\right)\\ =1\cdot\left(3+3^3\right)+3^4\cdot\left(3+3^3\right)+...+3^{28}\cdot\left(3+3^3\right)\\ =\left(3+3^3\right)\cdot\left(1+3^4+...+3^{28}\right)\\ =30\cdot\left(1+3^4+...+3^{28}\right)⋮15\left(\text{vì }30⋮15\right)\)

Vậy \(C⋮15\)

\(D=2+2^2+2^3+...+2^{60}\)

Tao có: \(21=3\cdot7;15=3\cdot5\)

\(D=2+2^2+2^3+...+2^{60}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\\ =2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\\ =\left(1+2\right)\cdot\left(2+2^3+...+2^{59}\right)\\ =3\cdot\left(2+2^3+...+2^{59}\right)⋮3\)

Vậy \(D⋮3\)

\(D=2+2^2+2^3+...+2^{60}\\ =\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{57}+2^{59}\right)+\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\\ =2\cdot\left(1+2^2\right)+2^5\cdot\left(1+2^2\right)+...+2^{57}\cdot\left(1+2^2\right)+2^2\cdot\left(1+2^2\right)+...+2^{58}\cdot\left(1+2^2\right)\\ =\left(1+2^2\right)\cdot\left(2+2^5+...+2^{57}+2^2+...+2^{59}\right)\\ =5\cdot\left(2+2^5+...+2^{57}+2^2+...+2^{59}\right)⋮5\)

Vậy \(D⋮5\)

\(D=2+2^2+2^3+...+2^{60}\\ =\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\\ =2\cdot\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{58}\cdot\left(1+2+2^2\right)\\ =\left(1+2+2^2\right)\cdot\left(2+2^4+...+2^{58}\right)\\ =7\cdot\left(2+2^4+...+2^{58}\right)⋮7\)

Ta có:

\(D⋮3;D⋮5\Rightarrow D⋮3\cdot5\Leftrightarrow D⋮15\)

\(D⋮3;D⋮7\Rightarrow D⋮3\cdot7\Leftrightarrow D⋮21\)

Vậy \(D⋮15;D⋮21\)

26 tháng 6 2017

Mình chỉ làm mẫu 1 câu thui nha:

\(A=17^{18}-17^{16}\)

\(A=17^{16}.17^2-17^{16}.1\)

\(A=17^{16}\left(17^2-1\right)\)

\(A=17^{16}.288\)

\(A=17^{16}.16.18\)

\(A⋮18\left(đpcm\right)\)