Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sin^4x.\sin^2x+\cos^4x.\cos^2x-\left(\sin^4x+\cos^4x+\dfrac{1}{2}\sin^4x+\dfrac{1}{2}\cos^4x-\dfrac{3}{2}\right)-1=-\sin^4x.\left(1-\sin^2x\right)-cos^4x.\left(1-\cos^2x\right)-\dfrac{1}{2}\left(\sin^4x+\cos^4x\right)+\dfrac{1}{2}=-\left(\sin^4x.\cos^2x+\cos^4x.\sin^2x\right)-\dfrac{1}{2}\left(\left(\sin^2x+\cos^2x\right)^2-2\sin^2x.\cos^2x\right)+\dfrac{1}{2}=-\left(\sin^2x.\cos^2x.\left(\sin^2x+\cos^2x\right)\right)-\dfrac{1}{2}.\left(1-2\sin^2x.\cos^2x\right)+\dfrac{1}{2}=-\sin^2x.\cos^2x+\sin^2x.\cos^2x-\dfrac{1}{2}+\dfrac{1}{2}=0\)
Từ M kẻ MP ⊥ Ox, MQ ⊥ Oy
=> = cosα; =
= sinα;
Trong tam giác vuông MPO:
MP2+ PO2 = OM2 => cos2 α + sin2 α = 1
\(cos\left(360-90-x\right)-3sin\left(360+90-x\right)-sin\left(360+180-x\right)\)
\(=cos\left(90+x\right)-3sin\left(90-x\right)-sin\left(180-x\right)\)
\(=-sinx-3cosx-sinx=-2sinx-3cosx\)
\(=\left(\sin100^0+\sin80^0\right)+\left(\cos16^0+\cos164^0\right)=1\)
\(sina\sqrt{1+\frac{sin^2a}{cos^2a}}=sina\sqrt{\frac{cos^2a+sin^2a}{cos^2a}}=\frac{sina}{\left|cosa\right|}=\pm tana\)
\(\frac{1-cos^2x}{1-sin^2x}+tanx.cotx=\frac{sin^2x}{cos^2x}+\frac{sinx}{cosx}.\frac{cosx}{sinx}=tan^2x+1=\frac{1}{cos^2x}\)
\(\frac{1-4sin^2xcos^2x}{\left(sinx+cosx\right)^2}=\frac{\left(1-2sinx.cosx\right)\left(1+2sinx.cosx\right)}{sin^2x+cos^2x+2sinx.cosx}=\frac{\left(1-sin2x\right)\left(1+2sinx.cosx\right)}{1+2sinx.cosx}=1-2sinx\)
\(sin\left(90-x\right)+cos\left(180-x\right)+sin^2x\left(1+tan^2x\right)-tan^2x\)
\(=cosx-cosx+sin^2x.\frac{1}{cos^2x}-tan^2x=tan^2x-tan^2x=0\)
Giải các Pt sau:
cos5s - sin2x =0
sin5x + cos2x =1
cos2x + \(2\sqrt{3}sinxcosx\) - sin2x = \(\sqrt{2}\)
d.
Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^4x\)
\(tan^4x-3tan^2x-4tanx-3=0\)
\(\Leftrightarrow\left(tan^2x+tanx+1\right)\left(tan^2x-tanx-3\right)=0\)
\(\Leftrightarrow tan^2x-tanx-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=\frac{1-\sqrt{13}}{2}\\tanx=\frac{1+\sqrt{13}}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(\frac{1-\sqrt{13}}{2}\right)+k\pi\\x=arctan\left(\frac{1+\sqrt{13}}{2}\right)+k\pi\end{matrix}\right.\)
1) \(sin\left(A+2B+C\right)=sin\left(\pi-B+2B\right)\)
=\(sin\left(\pi+B\right)=sin\left(-B\right)=-sinB\)
2) \(sinBsinC-cosBcosC=-cos\left(B+C\right)\)
\(=-cos\left(\pi-A\right)=cosA\)
4) bạn ơi +2 vào vế phải mới đúng nhé
2+ \(2cosAcosBcosC=\left[cos\left(A+B\right)+cos\left(A-B\right)\right]cosC+2\)
\(=cos\left(\pi-C\right)cosC+cos\left(A-B\right)cos\left(\pi-\left(A+B\right)\right)+2\)
=\(-cos^2C-cos\left(A-B\right)cos\left(A+B\right)+2\)
\(=-cos^2C-\frac{1}{2}\left(cos2A+cos2B\right)+2\)
\(=-cos^2C-\frac{1}{2}\left(2cos^2A-1\right)-\frac{1}{2}\left(2cos^2B-1\right)+2\)
\(=-cos^2C-cos^2A+\frac{1}{2}-cos^2C+\frac{1}{2}+2\)
= sin2C - 1 + sin2A - 1 + sin2C - 1 + 3
= sin2A + sin2B + sin2C
ta có : \(sin136^0=sin\left(180-136\right)^0=sin44^0\left(đpcm\right)\)
ta có : \(cos136^0=-cos\left(180-136\right)^0=-cos44^0\left(đpcm\right)\)