K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 11 2017

Lời giải:

Ta có:

\(\frac{1}{13}; \frac{1}{14}; \frac{1}{15}<\frac{1}{12}\)

\(\Rightarrow \frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{3}{12}=\frac{1}{4}\)

\(\frac{1}{61}; \frac{1}{62};\frac{1}{63}< \frac{1}{60}\)

\(\Rightarrow \frac{1}{61}+\frac{1}{62}+\frac{1}{63}< \frac{3}{60}=\frac{1}{20}\)

Do đó:

\(A< \frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{9}{20}+\frac{1}{20}\)

\(\Leftrightarrow A< \frac{1}{2}\) (đpcm)

8 tháng 11 2017

Đặt biểu thức bằng A:

\(\Rightarrow A=\dfrac{1}{5}\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)

Ta thấy: \(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< 3.\dfrac{1}{61}\)

\(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< 3.\dfrac{1}{61}\)

\(\Rightarrow A< \dfrac{1}{5}+\dfrac{3}{31}+\dfrac{3}{61}< \dfrac{1}{2}\left(đpcm\right)\)

21 tháng 11 2017

Ta dễ dàng chứng minh được: \(n^2+\left(n+1\right)^2>2n\left(n+1\right)\)

Thật vậy:

\(n^2+\left(n+1\right)^2=n^2+n^2+2n+1=2n^2+2n+1>2n^2+2n=2n\left(n+1\right)\)Trở lại bài toán

\(A=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{25}+...+\dfrac{1}{n^2+\left(n+1\right)^2}\)

\(A=\dfrac{1}{1^2+2^2}+\dfrac{1}{2^2+3^2}+\dfrac{1}{3^2+4^2}+....+\dfrac{1}{n^2+\left(n+1\right)^2}\)

\(A< \dfrac{1}{2.1.\left(1+1\right)}+\dfrac{1}{2.2.\left(2+1\right)}+\dfrac{1}{2.3.\left(3+1\right)}+....+\dfrac{1}{2n\left(n+1\right)}\)

\(A< \dfrac{1}{2.1.2}+\dfrac{1}{2.2.3}+\dfrac{1}{2.3.4}+....+\dfrac{1}{2n\left(n+1\right)}\)

\(A< \dfrac{1}{2}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}\right)\)

\(A< \dfrac{1}{2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)

\(A< \dfrac{1}{2}\left(1-\dfrac{1}{n+1}\right)\)

\(A< \dfrac{1}{2}-\dfrac{1}{2n+2}< \dfrac{1}{2}\left(đpcm\right)\)

11 tháng 11 2018

a)= \(\left(\dfrac{4}{9}-\dfrac{17}{18}\right)+\left(\dfrac{17}{14}-\dfrac{5}{7}\right)+\dfrac{11}{125}\)

= \(\dfrac{-1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{11}{125}\)

= 0 + \(\dfrac{11}{125}\)

= \(\dfrac{11}{125}\)

b) \(=\left(1-1\right)+\left(\dfrac{-1}{2}-\dfrac{1}{2}\right)+\left(2-2\right)\) +

\(\left(\dfrac{-2}{3}-\dfrac{1}{3}\right)+\left(3-3\right)+\left(\dfrac{-3}{4}-\dfrac{1}{4}\right)\) + 4

= 0 + (-1) + 0 + (-1) + 0 + (-1) + 4

= -1

c) = \(\dfrac{1}{3}.\dfrac{14}{25}-\dfrac{1}{2}.\dfrac{14}{25}\)

= \(\dfrac{14}{25}.\left(\dfrac{1}{3}-\dfrac{1}{2}\right)\)

= \(\dfrac{14}{25}.\left(\dfrac{-1}{6}\right)\)

= \(\dfrac{-7}{75}\)

d) = \(\left(\dfrac{3}{7}+\dfrac{4}{7}\right)+\left(\dfrac{5}{13}-\dfrac{18}{13}\right)\)

= 1 + (-1)

= 0

16 tháng 9 2017

a) \(A=\dfrac{1}{3}-\dfrac{3}{4}-\left(-\dfrac{3}{5}\right)+\dfrac{1}{72}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\)

\(=\dfrac{1}{3}-\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{1}{72}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\)

\(=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)-\left(\dfrac{3}{4}+\dfrac{2}{9}+\dfrac{1}{36}\right)+\dfrac{1}{72}\)

\(=\left(\dfrac{5}{15}+\dfrac{9}{15}+\dfrac{1}{15}\right)-\left(\dfrac{27}{36}+\dfrac{8}{36}+\dfrac{1}{36}\right)+\dfrac{1}{72}\)

\(=1-1+\dfrac{1}{72}\)

\(=0+\dfrac{1}{72}=\dfrac{1}{72}\)

b) \(B=\dfrac{1}{5}-\dfrac{3}{7}+\dfrac{5}{9}-\dfrac{2}{9}+\dfrac{7}{13}-\dfrac{2}{11}-\dfrac{5}{9}+\dfrac{3}{7}-\dfrac{1}{5}\)

\(=\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+\left(-\dfrac{3}{7}+\dfrac{3}{7}\right)+\left(\dfrac{5}{9}-\dfrac{5}{9}\right)-\left(\dfrac{2}{9}-\dfrac{7}{13}+\dfrac{2}{11}\right)\)

\(=0+0+0-\left(\dfrac{286}{1287}-\dfrac{693}{1287}+\dfrac{234}{1287}\right)\)

\(=-\left(-\dfrac{173}{1287}\right)\)

\(=\dfrac{173}{1287}\)

c) \(C=\dfrac{1}{100}-\dfrac{1}{100.99}-\dfrac{1}{99.98}-.....-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

\(=\dfrac{1}{100}-\left(\dfrac{1}{100.99}+\dfrac{1}{99.98}+\dfrac{1}{98.97}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)

\(=\dfrac{1}{100}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{97.98}+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)

\(=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\)

\(=\dfrac{-49}{50}\)

7 tháng 3 2018

T làm biếng lắm; làm C thôi

\(A=\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\\ \Rightarrow A< \dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{100}{101}\\ \Rightarrow A^2< \left(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\right).\left(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{100}{101}\right)\\ =\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}...\dfrac{99}{100}.\dfrac{100}{101}\\ =\dfrac{1}{101}< \dfrac{1}{100}\\ \Rightarrow A< \dfrac{1}{10}\)

Làm tương tự ta được A > 1/15

9 tháng 3 2018

câu a

\(A=\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{30}>\dfrac{20}{30}=\dfrac{2}{3}>\dfrac{1}{3}\)

\(A=\left(\dfrac{1}{11}+..+\dfrac{1}{15}\right)+\left(\dfrac{1}{16}+...+\dfrac{1}{30}\right)< 5.\dfrac{1}{10}+25.\dfrac{1}{15}=\dfrac{1}{2}+\dfrac{5}{3}=\dfrac{8}{6}=\dfrac{4}{3}< \dfrac{5}{2}\)

17 tháng 6 2017

a,\(\dfrac{1}{3}-\dfrac{3}{5}+\dfrac{5}{7}-\dfrac{7}{9}+\dfrac{9}{11}-\dfrac{11}{13}+\dfrac{13}{15}+\dfrac{11}{13}-\dfrac{9}{11}+\dfrac{7}{9}-\dfrac{5}{7}+\dfrac{3}{5}-\dfrac{1}{3}\)

\(=\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(-\dfrac{3}{5}+\dfrac{3}{5}\right)+.....+\left(-\dfrac{11}{13}+\dfrac{11}{13}\right)+\dfrac{13}{15}\)

\(=0+0+...0+0+\dfrac{13}{15}=\dfrac{13}{15}\)

câu b và c xem lại đề nha

Chúc bạn học tốt!!!

17 tháng 6 2017

Đề đúng mà bạn

15 tháng 10 2018

\(1,\)

\(a,\dfrac{11}{125}-\dfrac{17}{18}-\dfrac{5}{7}+\dfrac{4}{9}+\dfrac{17}{14}\)

\(=\dfrac{11}{125}+\left(\dfrac{4}{9}-\dfrac{17}{18}\right)+\left(\dfrac{17}{14}-\dfrac{5}{7}\right)\)

\(=\dfrac{11}{125}+\left(\dfrac{-1}{2}\right)+\dfrac{1}{2}\)

\(=\dfrac{11}{125}\)

\(b,-1\dfrac{5}{7}.15+\dfrac{2}{7}.\left(-15\right)+\left(-105\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\)

\(=\dfrac{-12}{7}.15+\dfrac{2}{7}.\left(-15\right)+\left(105\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\)

\(=-15.\left[\dfrac{12}{7}+\dfrac{2}{7}+\left(-5\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\right]\)

\(=-15.\left[2+\left(-5\right).\dfrac{1}{105}\right]\)

\(=-15.\left(2-\dfrac{1}{21}\right)\)

\(=-15.\dfrac{41}{21}=\dfrac{-615}{21}\)

\(2,\)

\(a,\dfrac{11}{13}-\left(\dfrac{5}{42}-x\right)=-\left(\dfrac{15}{28}-\dfrac{11}{13}\right)\)

\(\Leftrightarrow\dfrac{11}{13}-\dfrac{5}{42}+x=\dfrac{-15}{28}+\dfrac{11}{13}\)

\(\Leftrightarrow x=\dfrac{-15}{28}+\dfrac{11}{13}-\dfrac{11}{13}+\dfrac{5}{42}\)

\(\Leftrightarrow x=\left(\dfrac{11}{13}-\dfrac{11}{13}\right)+\left(\dfrac{5}{42}+\dfrac{-15}{28}\right)\)

\(\Leftrightarrow x=\dfrac{5}{12}\)

Vậy \(x=\dfrac{5}{12}\)

\(b,\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)

\(\Leftrightarrow\left|x+\dfrac{4}{15}\right|-3,75=-2,15\)

\(\Leftrightarrow\left|x+\dfrac{4}{15}\right|=-2,15+3,75=1,6=\dfrac{16}{10}=\dfrac{8}{5}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{4}{15}=\dfrac{8}{5}\\x+\dfrac{4}{15}=\dfrac{-8}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{5}-\dfrac{4}{15}=\dfrac{4}{3}\\x=\dfrac{-8}{5}-\dfrac{4}{15}=\dfrac{-28}{15}\end{matrix}\right.\)

Vậy \(x\in\left\{\dfrac{4}{3};\dfrac{-28}{15}\right\}\)

\(c,7^{x+2}+2.7^{x-1}=345\)

\(\Leftrightarrow7^{x-1}.\left(7^3+2\right)=345\)

\(\Leftrightarrow7^{x-1}.\left(343+2\right)=345\)

\(\Leftrightarrow7^{x-1}.345=345\)

\(\Leftrightarrow7^{x-1}=345:345=1\)

\(\Leftrightarrow x-1=0\)

\(x=0+1=1\)

Vậy \(x=1\)

10 tháng 10 2018

A= \(\dfrac{1}{3}-\dfrac{3}{5}+\dfrac{5}{7}-\dfrac{7}{9}+\dfrac{9}{11}-\dfrac{5}{7}+\dfrac{3}{5}-\dfrac{9}{11}=\dfrac{1}{3}-\dfrac{7}{9}=\dfrac{3}{9}-\dfrac{7}{9}=-\dfrac{4}{9}\)

12 tháng 10 2022

\(B=\left(\dfrac{1}{5}+\dfrac{2}{15}+\dfrac{2}{3}\right)+\left(-\dfrac{2}{7}+\dfrac{1}{42}-\dfrac{13}{28}-\dfrac{1}{4}\right)\)

\(=\dfrac{3+2+10}{15}+\dfrac{-2\cdot12+2-13\cdot3-21}{84}\)

=1-82/84

=2/84=1/42

\(C=\dfrac{1}{50}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\right)\)

\(=\dfrac{1}{50}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)

\(=\dfrac{1}{50}-1+\dfrac{1}{50}=\dfrac{1}{25}-1=-\dfrac{24}{25}\)

\(D=\dfrac{3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}{11\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}=\dfrac{3}{11}\)

10 tháng 9 2017

ngu như con bò tót, ko biết 1+1=2.