Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có: \(81^7-27^9-9^{13}\)
\(=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}\)
\(=3^{25}\left(3^3-3^2-3\right)=3^{25}\left(27-9-3\right)=3^{25}\cdot15\)
Vì \(15⋮15\) nên \(3^{25}\cdot15⋮15\)
\(\Rightarrow81^7-27^9-9^{13}⋮15\) (đpcm)
b. Ta có: \(24^{54}\cdot54^{24}\cdot2^{10}\)
\(=\left(2^3\cdot3\right)^{54}\cdot\left(3^3\cdot2\right)^{24}\cdot2^{10}\)
\(=\left(2^3\right)^{54}\cdot3^{54}\cdot\left(3^3\right)^{54}\cdot2^{54}\cdot2^{10}\)
\(=2^{162}\cdot2^{24}\cdot2^{10}\cdot3^{54}\cdot3^{72}=2^{196}\cdot3^{126}\)
Mà \(72^{63}=\left(2^3\cdot3^2\right)^{63}\)
\(=\left(2^3\right)^{63}\cdot\left(3^2\right)^{63}=2^{189}\cdot3^{126}\)
Vì \((2^{196}\cdot3^{126})⋮\left(2^{189}\cdot3^{126}\right)\)
\(\Rightarrow24^{54}\cdot54^{24}\cdot2^{10}⋮72^{63}\) (đpcm)
a) \(7^6+7^5-7^4=7^4.7^2+7^4.7+7^4.1\)
\(=7^4.\left(7^2+7-1\right)\)
\(=7^4.55\)
Mà \(55⋮11\Rightarrow7^4.55⋮11\Leftrightarrow7^6+7^5-7^4⋮11\left(đpcm\right).\)
b) \(10^9+10^8+10^7=10^6.10^3+10^6.10^2+10^6.10\)
\(=10^6.\left(10^3+10^2+10\right)\)
\(=10^6.1110\)
Mà \(1110⋮222\Rightarrow10^6.110⋮222\Leftrightarrow10^9+10^8+10^7⋮222\left(đpcm\right).\)
c) \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=3^{26}.3^2+3^{26}.3+3^{26}.1\)
\(=3^{26}.\left(3^2+3+1\right)\)
\(=3^{24}.3^2.5\)
\(=3^{24}.45\)
Mà \(45⋮45\Rightarrow3^{24}.45⋮45\Leftrightarrow81^7-27^9-9^{13}⋮45\left(đpcm\right).\)
d) \(24^{54}.54^{24}.2^{10}=\left(8.3\right)^{54}.\left(27.2\right)^{24}.2^{10}\)
\(=\left(2^3.3\right)^{54}.\left(3^3.2\right)^{24}.2^{10}\)
\(=\left(2^3\right)^{54}.3^{54}.\left(3^3\right)^{24}.2^{24}.2^{10}\)
\(=2^{162}.3^{54}.3^{72}.2^{34}\)
\(=2^{196}.3^{126}\)
\(=2^{189}.2^7.3^{126}\)
\(=\left[\left(2^3\right)^{63}.\left(3^2\right)^{63}\right].2^7\)
\(=\left(8^{63}.9^{63}\right).2^7\)
\(=72^{63}.2^7\)
Mà \(72^{63}⋮72^{63}\Rightarrow72^{63}.2^7⋮72^{63}\Leftrightarrow24^{54}.54^{24}.2^{10}⋮72^{63}\left(đpcm\right).\)
a) Xét từng vế ta có :
\(24^{54}.54^{24}.2^{10}=\left(2^3.3\right)^{54}.\left(2.3^2\right)^{24}.2^{10}\)
\(=2^{162}.3^{54}.2^{24}.3^{48}.2^{10}\)
\(=2^{172}.3^{102}\)
Xét vế tiếp theo ta có :
\(72^{63}=\left(2^3.3^2\right)^{63}=2^{189}.3^{126}\)
\(\Rightarrow72^{63}⋮24^{54}.2^{10}.54^{24}\)
\(\RightarrowĐPCM\)
a) \(7^6+7^5-7^4\)chia hết cho 11
\(=7^4\left(7^2+7-1\right)\)
\(=7^4.55=7^4.5.11\)chia hết cho 11
b) \(24^{54}.54^{24}.2^{10}\)chia hết cho \(72^{63}\)
\(=\left(2^3.3\right)^{54}.\left(3^3.2\right)^{24}\)
\(=\left(2^3\right)^{54}.3^{54}.\left(3^3\right)^{24}.2^{24}.2^{10}\)
\(=2^{162}.2^{24}.2^{10}.3^{54}.3^{72}\)
\(=2^{196}.3^{126}\)
\(72^{63}=\left(2^3.3^2\right)^{63}\)
\(=\left(2^3\right)^{63}.\left(3^2\right)^{63}=2^{189}.3^{126}\)
Vì \(2^{196}.3^{126}\)chia hết \(2^{189}.3^{126}\)
\(\Rightarrow24^{54}.54^{24}.2^{10}\)chia hết cho\(72^{63}\)
Bài 1 : a, Ta có : (-1)3 . (-1)5 . (-1)7 . (-1)9 . (-1)11 . (-1)13
= (-1)(-1).(-1).(-1).(-1).(-1)
= (-1)6
= 1
b, (1000 - 13) . (1000 - 23) . (1000 - 33) . ... . (1000 - 503)
= (1000 - 13) . (1000 - 23) . (1000 - 33) .... (1000 - 103).......(1000 - 503)
= (1000 - 13) . (1000 - 23) . (1000 - 33) .... 0 ........(1000 - 503)
= 0
Bài 2 :
Đặt A = 12 + 22 + 32 + ... + 102 = 385
=> 22(12 + 22 + 32 + ... + 102) = 22.385
=> 22 + 42 + 62 + ..... + 202 = 4.385
=> 22 + 42 + 62 + ..... + 202 = 1540
Vậy 22 + 42 + 62 + ..... + 202 = 1540
bài 3:
a) 2S=2+22+23+24+...+251
2S-S=251-1
mà 251-1<251
Suy ra:s<251
a, \(81^7-27^9-9^{13}\)
\(=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)\)
\(=3^{25}.3.5\)
\(=3^{25}.15⋮15\)
\(\Leftrightarrow81^7-27^9-9^{13}⋮15\Leftrightarrowđpcm\)