\(1.2.3...2003.2004.\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2003}+\dfrac{1}{2004}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 12 2018

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+ac+bc\right)=abc\)

\(\Leftrightarrow a\left(ab+ac+bc\right)+\left(b+c\right)\left(ab+ac+bc\right)-abc=0\)

\(\Leftrightarrow a\left(ab+ac+bc-bc\right)+\left(b+c\right)\left(ab+ac+bc\right)=0\)

\(\Leftrightarrow a^2\left(b+c\right)+\left(b+c\right)\left(ab+ac+bc\right)=0\)

\(\Leftrightarrow\left(a^2+ab+ac+bc\right)\left(b+c\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-c\\a=-b\\b=-c\end{matrix}\right.\)

- Nếu \(a=-c\Rightarrow a^{2006}=c^{2006}\Rightarrow c^{2006}-a^{2006}=0\Rightarrow P=0\)

- Nếu \(a=-b\Rightarrow a^{2004}=b^{2004}\Rightarrow a^{2004}-b^{2004}=0\Rightarrow P=0\)

- Nếu \(b=-c\Rightarrow b^{2005}=-c^{2005}\Rightarrow b^{2005}+c^{2005}=0\Rightarrow P=0\)

Vậy \(P=0\)

18 tháng 9 2017

Chứng minh biểu thức đó <2

Với mọi \(n\in N^{\cdot}\), ta có

\(\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)

\(\Leftrightarrow1< 2\left(n+1\right).\sqrt{n}\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)

\(\Leftrightarrow0< n+1-2\sqrt{n+1}.\sqrt{n}+n\)

\(\Leftrightarrow0< \left(\sqrt{n+1}-\sqrt{n}\right)^2\)(Luôn đúng vì n thuộc N*)

Do đó: \(\dfrac{1}{2}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{4\sqrt{3}}+...\dfrac{1}{2005\sqrt{2004}}< 2\left(\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{2004}}-\dfrac{1}{\sqrt{2005}}\right)\)

\(=2\left(1-\dfrac{1}{\sqrt{2005}}\right)< 2\)

7 tháng 4 2019

mk ko hiểu dòng thứ 3 cho lắm,tại sao ta luôn có điều đó vậy ạ

22 tháng 1 2019

@Luân Đào

5 tháng 7 2017

Xét dạng tổng quát:

\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}.\frac{1}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)

\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)=\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\)

\(< \left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(1+\frac{\sqrt{n+1}}{\sqrt{n+1}}\right)=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Áp dụng vào bài toán:

\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2005\sqrt{2004}}\)

\(< 2\left(1-\frac{1}{\sqrt{2}}\right)+2\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)+\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}\right)+...+\left(\frac{1}{\sqrt{2003}}-\frac{1}{\sqrt{2004}}\right)\)

\(< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{2003}}-\frac{1}{\sqrt{2004}}\right)\)

\(< 2\left(1-\frac{1}{\sqrt{2004}}\right)\)

\(< 2-\frac{2}{\sqrt{2004}}< 2\)

=>đpcm

11 tháng 11 2017

\(\frac{1}{(n+1)\sqrt{n} }=\frac{\sqrt{n} }{n(n+1)}=\sqrt{n} (\frac{1}{\sqrt{n} } -\frac{1}{\sqrt{n+1} } )(\frac{1}{\sqrt{n} } +\frac{1}{\sqrt{n+1} } )=(1+\frac{\sqrt{n} }{\sqrt{n+1} } )(\frac{1}{\sqrt{n} } -\frac{1}{\sqrt{n+1} } <2(\frac{1}{\sqrt{n} } -\frac{1}{\sqrt{n+1} } )\)

Áp dụng BĐT vừa CM ta có

A< 2(1-\(\frac{1}{\sqrt{2} } +\frac{1}{\sqrt{2} } -\frac{1}{\sqrt{3} } +...+\frac{1}{\sqrt{n} } -\frac{1}{\sqrt{n+1} } \))<2(đpcm)

12 tháng 11 2017

Cảm ơn bạn nhé !!