Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(a+b\right)^2\ge4ab\\ \Leftrightarrow a^2+2ab+b^2-4ab\ge0\\ \Leftrightarrow a^2-2ab+b^2\ge0\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(đúng\right)\)
Do đó \(\left(a+b\right)^2\ge4ab\)(đpcm)
Các câu sau tương tự
câu 1 :a2+ab+ b2/4 +3b2/4=(a+b/2)2 +3b2/2 tong 2 binh phương luôn >=0 dau bang khi ca hai số đó bằng 0. a=0 và b=0
câu 2: a2-ab+ b2/4 +3b2/4=(a-b/2)2 +3b2/2 .a=0 và b=0
a) \(a^2+b^2=a^2+\frac{1}{4}+b^2+\frac{1}{4}-\frac{1}{2}\)
\(\ge2\sqrt{a^2.\frac{1}{4}}+2\sqrt{b^2.\frac{1}{4}}-\frac{1}{2}\) (bdt cosi)
\(=a+b-\frac{1}{2}=1-\frac{1}{2}=\frac{1}{2}\) (vi a+b=1)
dau = xay ra <=> a=b=1/2
chuc ban hoc tot
mik phai di ngu nen lam hoi tat mong bn thong cam
phan b bn lam tuong tu nha
1/ Ta có:
\(\left(a-b\right)^2\ge0,\) mọi a, b
<=> \(a^2-2ab+b^2\ge0\)
<=> \(2a^2+2b^2\ge a^2+2ab+b^2\)
<=> \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
<=> \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{1}{2}\)
Dấu bằng xảy ra <=> a - b = 0 <=> a = b.
2/ Dựa vào câu 1.
\(a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(\frac{1}{2}\right)^2}{2}=\frac{1}{8}\).