Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(15n-7\right)}{\left(9-20n\right)}\left(ĐK:n\ne0\right)\)
Đặt n = 1 . Thế vào biểu thức . Ta có:
\(\Leftrightarrow\frac{\left(15.1-7\right)}{\left(9-20.1\right)}=\frac{\left(15-7\right)}{\left(9-20\right)}=\frac{8}{\left(-11\right)}=\frac{\left(-8\right)}{11}\). Mà:
\(\frac{\left(-8\right)}{11}\)là phân số tối giản
Suy ra ĐPCM
1) Vì ƯCLN ( n + 5 ; n + 6 ) = 1
2) Gọi ƯCLN ( 3n + 5 ; 4n + 7 ) là d
=> ( 3n + 5 ) \(⋮\)d
( 4n + 7 ) \(⋮\)d
=> 4(3n + 5 ) \(⋮\)d
3 ( 4n + 7 ) \(⋮\)d
=> 12n + 20 \(⋮\)d
12n + 21 \(⋮\)d
=> d = 1
=>3n+5/4n+7 là phân số tối giản
câu 3 làm tương tự câu 2
#๖ۣۜβσʂʂ彡
Bổ sung câu 1 của Thiên Ân :
Để \(\frac{n+5}{n+6}\)là phân số tối giản
=> ƯCLN ( n + 5 ; n + 6 ) = 1
Gọi ƯCLN ( n + 5 ; n + 6 ) = d
=> n + 5 \(⋮\)d và n + 6 \(⋮\)d ( 1 )
Từ 1
=> ( n + 6 ) - ( n + 5 ) \(⋮\)d
=> 1 \(⋮\)d
=> d \(\in\)Ư ( 1 )
=> d = 1
=> \(\frac{n+5}{n+6}\)là phân số tối giản => đpcm
\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)
\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)
\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)
\(\Rightarrow M< 1-\frac{1}{99}< 1\)
Dễ thấy M > 0 nên 0 < M < 1
Vậy M không là số tự nhiên.
\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))
\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)
Vậy \(S>\frac{1}{2}\left(đpcm\right)\)
Gọi d=UCLN(a,a+b);
=> a chia hết cho d
a+b chia hết cho d
=>a chia hết cho d
b chia hết cho d
Mà phấn số a,b tối giản =>UCLN(a,b)=1;
=>d=1;
=>UCLN(a,a+b)=1
=>a/a+b là p/s tối giản
Chúc bạn hok tốt!
nếu \(\frac{a}{b}\) là phân số tối giản thì \(\frac{a}{a+b}\) là phân số tối giản.
VD:\(\frac{1}{2}\rightarrow\frac{1}{1+2}=\frac{1}{3}\)
\(\frac{1}{3}\rightarrow\frac{1}{1+3}=\frac{1}{4}\)
....................................
(n thuộc Z và n khác 3) B thuộc N <=> 4/n-3 thuộc N và n-3 thuộc N <=> 4 chia hết cho n-3 hay n-3 thuộc Ư(4) = {1;2;4}
<=> n thuộc {4; 5; 7} (TM)
Vậy n thuộc 4,5,7 thì B là số dương
B à số nguyên thì 4n−34n−3 là số nguyên.
⇒4⇒4 ⋮⋮ (n−3)(n−3)
⇒(n−3)∈Ư(4)⇒(n−3)∈Ư(4)
⇒(n−3)∈{±1;±2;±4}⇒(n−3)∈{±1;±2;±4}
Ta có bảng sau:
n−3n−3 | −4−4 | −2−2 | −1−1 | 11 | 22 | 44 |
nn | −1−1 | 11 | 22 | 44 | 55 | 77 |
Gọi d là ƯCLN ( 12n + 1; 30n + 2 )
=> 12n + 1 ⋮ d => 5.( 12n + 1 ) ⋮ d => 60n + 5 ⋮ d ( 1 )
=> 20n + 2 ⋮ d => 2.( 30n + 3 ) ⋮ d => 60n + 6 ⋮ d ( 2 )
Từ ( 1 ) và ( 2 ) => [ ( 60n + 6 ) - ( 60n + 5 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯCLN ( 12n + 1; 30n + 2 ) = 1 nên 12n + 1 và 30n + 2 là nguyên tố cùng nhau
=> \(\frac{12n+1}{30n+2}\) là phân số tối giản
Gọi d là ƯCLN ( 12n + 1; 30n + 2 )
=> 12n + 1 ⋮ d => 5.( 12n + 1 ) ⋮ d => 60n + 5 ⋮ d ( 1 )
=> 20n + 2 ⋮ d => 2.( 30n + 3 ) ⋮ d => 60n + 6 ⋮ d ( 2 )
Từ ( 1 ) và ( 2 ) => [ ( 60n + 6 ) - ( 60n + 5 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯCLN ( 12n + 1; 30n + 2 ) = 1 nên 12n + 1 và 30n + 2 là nguyên tố cùng nhau
Gọi ƯCLN của tử và mẫu là d.( d thuộc Z )
=> \(\hept{\begin{cases}15n-7⋮d\\-20n+9⋮d\end{cases}}\)=> \(\hept{\begin{cases}60n-28⋮d\\-60n+27⋮d\end{cases}}\)
=> \(60n-28-60n+27⋮d\)
=> \(-1⋮d\) Hay d=1
Vậy ƯCLN của tử và mẫu là 1, hay phân số đó là tối giản ( đpcm )
Gọi \(ƯC\left(15n-7,9-20n\right)\)là d,Ta có
\(\hept{\begin{cases}15n-7⋮d\\9-20n⋮d\end{cases}\Rightarrow\hept{\begin{cases}60n-28⋮d\\27-60n⋮d\end{cases}}}\Rightarrow60n-28+27-60n⋮d\Rightarrow-1⋮d\Rightarrow d=\pm1\)
Vậy 15n-7/9-20n tối giản