Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta lam theo cach quy nap, Dat n=k
\(n^2+11n-10=k^2+11k-10\)khong chia het cho 49
Ta phai chung minh cung dung voi k+1
Ta co: \(\left(k+1\right)^2+11\left(k+1\right)-10=k^2+2k+1+11k+11-10=k^2+13k+2\)
\(=k^2+2\times k\times\frac{13}{2}+\frac{169}{4}-\frac{169}{4}+2=\left(k+\frac{13}{2}\right)^2-40,25\) khong chia het cho 49
=> DPCM
Ta có n² + n + 1 = n² + ( n + 1) = n(n+1) + 1
+ Giả sử : n chia hết cho 9
=> n² chia hết cho 9
=> (n + 1) không chia hết cho 9
=> n² + ( n + 1) không chia hết cho 9
+ Giả sử : ( n + 1) chia hết cho 9
=> n(n+1) chia hết cho 9
=> n(n+1) + 1 không chia hết cho 9
=> n² + ( n + 1) không chia hết cho 9
Ta có: n4-n2=n2(n2-1)
=n.n(n+1)(n-1)
Ta có: n(n+1)(n-1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 3
=>n.n(n+1)(n-1) chia hết cho 3 (1)
Nếu n chia 2 dư 1 thì n+1 và n-1 đều chia hết cho 2
=>(n+1)(n-1) chia hết cho 4
=>n.n(n+1)(n-1) chia hết cho 4
Nếu n chia hết cho 2
=>n.n chia hết cho 2.2=4
=>n.n(n+1)(n-1) chia hết cho 4
Vậy n.n(n+1)(n-1) chia hết cho 4 (2)
Từ (1) và (2) và (3;4)=1
=>n.n(n+1)(n-1) chia hết cho 3.4=12
Vậy n4-n2 chia hết cho 12 (đpcm)
)
=n.n(n+1)(n-1)
Ta có: n(n+1)(n-1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 3
=>n.n(n+1)(n-1) chia hết cho 3 (1)
Nếu n chia 2 dư 1 thì n+1 và n-1 đều chia hết cho 2
=>(n+1)(n-1) chia hết cho 4
=>n.n(n+1)(n-1) chia hết cho 4
Nếu n chia hết cho 2
=>n.n chia hết cho 2.2=4
=>n.n(n+1)(n-1) chia hết cho 4
Vậy n.n(n+1)(n-1) chia hết cho 4 (2)
Từ (1) và (2) và (3;4)=1
=>n.n(n+1)(n-1) chia hết cho 3.4=12
Vậy n4-n2 chia hết cho 12 (đpcm)
a)(n-1).(n+2)+12 không chia hết cho 9
Giả sử tồn tại số nguyên n sao cho
(n-1).(n+2)+12 chia hết cho9
suy ra (n-1).(n+2)+12 chia hết cho 3
mà 12 chia hết cho 3
Nên (n-1).(n+2) chia hết cho 3 (1) (vì 3 là số nguyên tố )
ta có n-1-n+2=n-1-n-2=3
Mà 3 chia hêt cho 3
nên (n-1).(n+2) hoặc cùng chia hết cho 3,hoặc cùng không chia hết cho 3 (2)
Từ (1)và (2)suy ra n-1 chia hết cho 3 và n+2 chia hết cho3
Suy ra (n-1).(n+2) chia hết cho 3.3
Suy ra (n-1).(n+2) chia hết cho 9
Mà 12 không chia hết cho 9
Suy ra điều giả sử là sai
Suy ra (n-1).(n+2) không chia hết cho 9
vậy......
câu b làm tương tự
Thống nhất biểu thức là $A=n^4+5n^2+9$ bạn nhé, không phải $x$.
Lời giải:
Giả sử $n^4+5n^2+9\vdots 121$
$\Rightarrow n^4+5n^2+9\vdots 11$
$\Rightarrow n^4+5n^2-11n^2+9\vdots 11$
$\Rightarrow n^4-6n^2+9\vdots 11$
$\Rightarrow (n^2-3)^2\vdots 11$
$\Rightarrow n^2-3\vdots 11$
Đặt $n^2-3=11k$ với $k$ nguyên
Khi đó: $n^4+5n^2+9=(11k+3)^2+5(11k+3)+9=121k^2+121k+33\not\vdots 121$ (trái với giả sử)
Vậy giả sử là sai. Tức là với mọi số nguyên $n$ thì $n^4+5n^2+9$ không chia hết cho $121$