\(a^2\left(b+c-a\right)+b^2\left(a+c-b\right)+c^2\lef...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2017

Vì vai trò của a,b,c là như nhau , nên có thể giả thiết \(a\ge b>c>0.\)

Có thể thấy rằng phải chứng minh : \(B\ge0,\)với

\(B=3abc+a^3+b^3+c^3-a^2b-b^2a-a^2c-b^2c-c^2a-c^2b\)

\(=a^2\left(a-b\right)+b^2\left(b-a\right)+c\left(2ab-a^2-b^2\right)+c\left(c^2-bc-ac+ab\right)\)

\(=\left(a-b\right)\left(a^2-b^2\right)-c\left(a-b\right)^2+c\left(c-a\right)\left(c-b\right)\)

\(=\left(a-b\right)^2\left(a+b-c\right)+\left(b-c\right)\left(a-c\right)\)

Do giả thiết \(a\ge b\ge c,c>0\)

\(\RightarrowĐPCM\)

22 tháng 6 2017

Không mất tính tổng quát ta giả sử: \(a\ge b\ge c\ge0\)

Đầu tiên ta chứng minh 

\(\left(a-b\right)^2\left(a+b-c\right)+\left(b-c\right)^2\left(b+c-a\right)+\left(c-a\right)^2\left(c+a-b\right)\ge0\left(1\right)\)

Ta xét 2 trường hợp:

TH 1: \(b+c\le a\)

\(\Leftrightarrow\hept{\begin{cases}a-c\ge b-c\\a+c-b\ge b+c-a\end{cases}}\)

\(\Rightarrow\left(a-c\right)^2\left(a+c-b\right)\ge\left(b-c\right)^2\left(b+c-a\right)\)

\(\Rightarrow\left(1\right)\)đúng 

TH 2: \(a+b-c\ge a+c-b\ge b+c-a\ge0\) thì  (1) đúng.

\(\Rightarrow\left(a-b\right)^2\left(a+b-c\right)+\left(b-c\right)^2\left(b+c-a\right)+\left(c-a\right)^2\left(c+a-b\right)\ge0\)

\(\Leftrightarrow a^3+b^3+c^3-a^2b-a^2c-b^2a-b^2c-c^2a-c^2b+3abc\ge0\)

\(\Leftrightarrow3abc\ge\left(a^2b+a^2c-a^3\right)+\left(b^2a+b^2c-b^3\right)+\left(c^2a+c^2b-c^3\right)\)

\(\Leftrightarrow a^2\left(b+c-a\right)+b^2\left(a+c-b\right)+c^2\left(a+b-c\right)\le3abc\)

21 tháng 6 2017

Có cho a,b,c là 3 cạnh của tam giác không ta

13 tháng 8 2017

4) Ta có : A=(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)

=> (a+d)2 - (b+c)2= (a-d)2 - (c-b)2

=> a2+ d2+ 2ad - b2- c2- 2bc=a2 + d2 - 2ad - c2-b2+2bc

Rút gọn ta được: 4ad = 4bc => ad = bc =>\(\dfrac{a}{c}=\dfrac{b}{d}\)

13 tháng 8 2017

1) a2+b2+c2+3=2(a+b+c) =>(a-1)2+(b-1)2+(c-1)2=0

=> a-1=b-1=c-1=0 => a=b=c=1 =>đpcm

3 tháng 8 2017

a)

Đặt   \(A=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(\Rightarrow A=\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\)

Áp dụng BĐT Schwarz , ta có :

\(A\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\)  (1)

Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3\left(ab+bc+ac\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

\(\Leftrightarrow\frac{\left(a+b+c\right)^2}{ab+bc+ac}\ge3\)     (2)

Từ (1) và (2) , suy ra :  \(A\ge\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

b)

\(\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge\frac{\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]^2}{a+b+c}=4\left(a+b+c\right)\)

4 tháng 8 2017

 tại sao lại dc cái này bạn

\(\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge\frac{\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]^2}{a+b+c}\)

26 tháng 11 2016

\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}-\frac{1}{a-c}\)

\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{\left(b-a\right)-\left(b-c\right)}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}-\frac{1}{b-a}\)

\(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{\left(c-b\right)-\left(c-a\right)}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}-\frac{1}{c-b}\)

Cộng theo vế ba đẳng trên được dpcm.

bn làm đúng rồi đó

19 tháng 11 2019

Nhân tung tóe + rút gọn ta được: \(\Sigma_{cyc}a^3b^2+\Sigma_{cyc}ab^3\ge abc\left(ab+bc+ca+a+b+c\right)\)

\(\Leftrightarrow\)\(\Sigma\frac{a^2b}{c}+\Sigma\frac{a^2}{b}\ge ab+bc+ca+a+b+c\) (*) 

(*) đúng do \(\hept{\begin{cases}\frac{a^2b}{c}+bc\ge2ab\\\frac{a^2}{b}+b\ge2a\end{cases}}\Rightarrow\hept{\begin{cases}\Sigma\frac{a^2b}{c}\ge ab+bc+ca\\\Sigma\frac{a^2}{b}\ge a+b+c\end{cases}}\)

"=" \(\Leftrightarrow\)\(a=b=c\)

NV
12 tháng 6 2020

\(\Leftrightarrow\frac{\left(b+c\right)^2+a^2-2a\left(b+c\right)}{\left(b+c\right)^2+a^2}+\frac{\left(a+c\right)^2+b^2-2b\left(a+c\right)}{\left(a+c\right)^2+b^2}+\frac{\left(b+a\right)^2+c^2-2c\left(a+b\right)}{\left(a+b\right)^2+c^2}\ge\frac{3}{5}\)

\(\Leftrightarrow3-2\left(\frac{a\left(b+c\right)}{\left(b+c\right)^2+a^2}+\frac{b\left(a+c\right)}{\left(a+c\right)^2+b^2}+\frac{c\left(a+b\right)}{\left(a+b\right)^2+c^2}\right)\ge\frac{3}{5}\)

\(\Leftrightarrow\frac{a\left(b+c\right)}{\left(b+c\right)^2+a^2}+\frac{b\left(a+c\right)}{\left(a+c\right)^2+b^2}+\frac{c\left(a+b\right)}{\left(a+b\right)^2+c^2}\le\frac{6}{5}\)

Chuẩn hóa \(a+b+c=3\) (hay đặt \(x=\frac{3a}{a+b+c};y=\frac{3b}{a+b+c};z=\frac{3c}{a+b+c}\))

BĐT cần chứng minh trở thành:

\(\frac{a\left(3-a\right)}{\left(3-a\right)^2+a^2}+\frac{b\left(3-b\right)}{\left(3-b\right)^2+b^2}+\frac{c\left(3-c\right)}{\left(3-c\right)^2+c^2}\le\frac{6}{5}\)

Ta có đánh giá: \(\frac{a\left(3-a\right)}{\left(3-a\right)^2+a^2}\le\frac{9a+1}{25}\) ; \(\forall a\in\left(0;3\right)\)

\(\Leftrightarrow\left(a-1\right)^2\left(2a+1\right)\ge0\) (luôn đúng)

Tương tự: \(\frac{b\left(3-b\right)}{\left(3-b\right)^2+b^2}\le\frac{9b+1}{25};\frac{c\left(3-c\right)}{\left(3-c\right)^2+c^2}\le\frac{9c+1}{25}\)

Cộng vế với vế: \(VT\le\frac{9\left(a+b+c\right)+3}{25}=\frac{30}{25}=\frac{6}{5}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)