K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2020

2/Theo đề ta có:

\(x^2+y^2=a^2+b^2\)

\(\Leftrightarrow\left(x-a\right)\left(x+a\right)=\left(b-y\right)\left(b+y\right)\)(1)

Lại có: \(x-a=b-y\) Thay vào (1) đc

\(\left(x-a\right)\left(x+a\right)-\left(x-a\right)\left(b+y\right)=0\)

\(\Leftrightarrow\left(x-a\right)\left(x+a-b-y\right)=0\Rightarrow x=a\)(2)

Tương tự ta cũng có:

\(\left(b-y\right)\left(x+a\right)-\left(b-y\right)\left(b+y\right)=0\)

\(\Leftrightarrow\left(b-y\right)\left(x+a-b-y\right)=0\Rightarrow b=y\)(3)

(2) và (3) có ĐPCM

26 tháng 3 2020

Bạn tham khảo câu trả lời ở đây nhé:

http://pitago.vn/question/cho-a-b-c-doi-mot-khac-nhau-thoa-man-abacbc-1-tinh-gia-tr-40688.html

15 tháng 9 2018

2 ) b )

\(a+b+c+d=0\)

\(\Leftrightarrow a+b=-\left(c+d\right)\)

\(\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)

\(\Leftrightarrow a^3+b^3+3a^2b+3b^2a=-c^3-3c^2d-3d^2c-d^3\)

\(\Leftrightarrow a^3+b^3+3a^2b+3b^2a+c^3+3c^2d+3d^2c+d^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3a^2b-3b^2a-3c^2d-3d^2c\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ab\left(a+b\right)-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(ab-cd\right)\left(c+d\right)\) \(\left(đpcm\right)\)

11 tháng 9 2017

Bài 1:

a, Ta có:

\(\left(a+b+c\right)^2-\left(ab+bc+ca\right)=0\Leftrightarrow a^2+b^2+c^2+ab+bc+ca=0\)\(\Leftrightarrow2a^2+2b^2+2c^2+2ab+2bc+2ca=0\)

\(\Leftrightarrow\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2=0\Leftrightarrow a+b=b+c=c+a=0\)

\(\Leftrightarrow a=b=c=0\)

Vậy điều kiện để phân thức M được xác định là a, b, c không đồng thời = 0

b, Ta có:

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

Đặt: \(a^2+b^2+c^2=x,ab+bc+ca=y\)

=> \(\left(a+b+c\right)^2=x+2y\)

Ta cũng có:

\(M=\dfrac{x\left(x+2y\right)+y^2}{x+2y-y}=\dfrac{x^2+2xy+y^2}{x+y}=\dfrac{\left(x+y\right)^2}{x+y}=x+y\)

\(=a^2+b^2+c^2+ab+bc+ca\)

9 tháng 8 2017

a) \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}+\dfrac{1}{\left(b-c\right)\left(c-a\right)}+\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)

\(=\dfrac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

b) \(\dfrac{\left(a^2-\left(b+c\right)^2\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a^2+c^2-2ac-b^2\right)}\)

\(=\dfrac{\left(a-b-c\right)\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(\left(a-c\right)^2-b^2\right)}\)

\(=\dfrac{\left(a-c-b\right)\left(a-c+b\right)}{\left(a-c-b\right)\left(a-c+b\right)}=1\)

c) \(\dfrac{x-1}{x^3}-\dfrac{x+1}{x^3-x^2}+\dfrac{3}{x^3-2x^2+x}\)

\(=\dfrac{x-1}{x^3}-\dfrac{x+1}{x^2\left(x-1\right)}+\dfrac{3}{x\left(x-1\right)^2}\)

\(=\dfrac{\left(x-1\right)^3-x\left(x+1\right)\left(x-1\right)+3x^2}{x^3\left(x-1\right)^2}\)

\(=\dfrac{x^3-3x^2+3x-1-x^3+x+3x^2}{x^3\left(x-1\right)^2}\)

\(=\dfrac{4x-1}{x^3\left(x-1\right)^2}\)

d) \(\left(\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}\left(\dfrac{x^2}{y}-\dfrac{y^2}{x}\right)\right):\dfrac{x-y}{x}\)

\(=\left(\dfrac{\left(x-y\right)\left(x+y\right)}{xy}-\dfrac{1}{x+y}.\dfrac{x^3-y^3}{xy}\right):\dfrac{x-y}{x}\)

\(=\left(\dfrac{\left(x-y\right)\left(x+y\right)}{xy}-\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{xy\left(x+y\right)}\right):\dfrac{x-y}{x}\)

\(=\dfrac{\left(x-y\right)\left(x^2+2xy+y^2-x^2-xy-y^2\right)}{xy\left(x+y\right)}.\dfrac{x}{x-y}\)

\(=\dfrac{x}{x+y}\)

10 tháng 8 2017

thanks hihi

28 tháng 9 2017

1.Phân tích đa thức thành nhân tử

a)\(8x^3+\dfrac{1}{27}\)

\(=\left(2x\right)^3+\left(\dfrac{1}{3}\right)^3\)

\(=\left(2x+\dfrac{1}{3}\right)\left(\left(2x\right)^2-2x\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2\right)\)

\(=\left(2x+\dfrac{1}{3}\right)\left(4x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)\)

b)\(\left(x-y+5\right)^2-2\left(x-y+5\right)+1\)

\(=\left(x-y+5\right)^2-2.\left(x-y+5\right).1+1^2\)

\(=\left(x-y+5-1\right)^2\)

\(=\left(x-y+4\right)^2\)

c)\(125-x^6\)

\(=5^3-\left(x^2\right)^3\)

\(=\left(5-x^2\right)\left(5^2+5x^2+\left(x^2\right)^2\right)\)

\(=\left(5-x^2\right)\left(25+5x^2+x^4\right)\)

d)\(\left(x^2+4y^2-5\right)^2-16\left(x^2y^2+2xy+1\right)\)

\(=\left(x^2+4y^2-5\right)^2-4^2\left(\left(xy\right)^2+2xy.1+1^2\right)\)

\(=\left(x^2+4y^2-5\right)^2-4^2\left(xy+1\right)^2\)

\(=\left(x^2+4y^2-5\right)^2-\left(4xy+4\right)^2\)

\(=\left(x^2+4y^2-5-4xy-4\right)\left(x^2+4y^2-5+4xy+4\right)\)

\(=\left(x^2-2.x.2y+\left(2y\right)^2-9\right)\left(x^2+2.x.2y+\left(2y\right)^2-1\right)\)

\(=\left(\left(x-2y\right)^2-3^2\right)\left(\left(x+2y\right)^2-1^2\right)\)

\(=\left(x-2y-3\right)\left(x-2y+3\right)\left(x+2y-1\right)\left(x+2y+1\right)\)

29 tháng 9 2017

Đây bạnPhân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung

16 tháng 8 2017

HELP Toshiro Kiyoshi, Nguyễn Thanh Hằng, Nguyễn Huy Tú, Phương An, Hồng Phúc Nguyễn,....

16 tháng 8 2017

Ta có:

\(\left\{{}\begin{matrix}P=\left(a+1\right)^2+\left(b+1\right)^2+\left(c+1\right)^2+2\left(ab+bc+ac\right)\\Q=\left(a+b+c+1\right)^2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}P=a^2+a+1+b^2+b+1+c^2+c+1+2ab+2bc+2ac\\Q=a^2+b^2+c^2+1+2ab+2ac+2a+2bc+2b+2c\end{matrix}\right.\)

\(\Rightarrow P-Q=\left(a^2+a+1+b^2+b+1+c^2+c+1+2ab+2bc+2ac\right)\left(a^2+b^2+c^2+1+2ab+2ac+2a+2bc+2b+2c\right)\)

\(\Rightarrow P-Q=a^2+b^2+c^2+a+b+c+3+2ab+2bc+2ac-a^2-b^2-c^2-1-2ab-2ac-2a-2bc-2b-2c\)

\(\Rightarrow P-Q=-a-b-c+2=-\left(a+b+c-2\right)\)

Vậy..............

Chúc bạn học tốt!!!

7 tháng 7 2019

2) Để sau đi (em chưa nghĩ ra)

3) \(A=\left(x+y\right)\left(x^2-y^2\right)+\left(y+z\right)\left(y^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)

\(=\left(x+y\right)^2\left(x-y\right)+\left(y+z\right)^2\left(y-z\right)+\left(z+x\right)^2\left(z-x\right)\)

Đặt x - y = a; y - z = b => z - x = -(a+b)

\(A=\left(x+y\right)^2a+\left(y+z\right)^2b-\left(z+x\right)^2a-\left(z+x\right)^2b\)

\(=a\left[\left(x+y\right)^2-\left(z+x\right)^2\right]+b\left[\left(y+z\right)^2-\left(z+x\right)^2\right]\)

\(=\left(x-y\right)\left(x+y-z-x\right)\left(x+y+z+x\right)+\left(y-z\right)\left(y+z-z-x\right)\left(y+z+z+x\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(2x+y+z\right)-\left(y-z\right)\left(x-y\right)\left(2z+x+y\right)\)

\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)

Em tính sai sót chỗ nào thì thông cảm cho em ạ :>

3 tháng 11 2017

1) a4+b4+c42a2b22a2c22b2c2

=2(a4+b4+c4-4a2b2-4a2c2-4b2c2)

=2a4+2b4+2c4-4a2b2-4a2c2-4b2c2

=(a4-2a2b2+b4)+(a4-2a2c2+c4)+(b4-2b2c2+c4