Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : 5n+2 + 26.5n + 82n+1 = 25.5n + 26.5n + 8.64n = 51.5n + 8.64n
Vì \(64\equiv5\) ( mod 59 ) nên \(64^n\equiv5^n\) ( mod 59 )
Do đó : \(5^{n+2}+26.5^n+8^{2n+1}\equiv51.5^n+8.5^n\) ( mod 59 )
\(\Leftrightarrow5^{n+2}+26.5^n+8^{2n+1}\equiv59.5^n\) ( mod 59 )
\(\Leftrightarrow5^{n+2}+26.5^n+8^{2n+1}\equiv0\) ( mod 59 ) hay \(\left(5^{n+2}+26.5^n+8^{2n+1}\right)⋮59̸\)
b, Ta có : \(168=2^3.3.7\)
- Vì \(3^{2n}+7=9^n+7\equiv1+7\)( mod 8 ) hay \(3^{2n}+7\equiv0\) ( mod 8 )
\(\Rightarrow\left(3^{2n}+7\right)⋮8.\)Mặt khác : \(4^{2n}=16^n⋮8\)nên \(\left(4^{2n}-3^{2n}-7\right)⋮8\) (1)
- Vì \(4^{2n}\equiv1\)( mod 3 ) ; \(7\equiv1\)( mod 3 ) \(\Rightarrow4^{2n}-7\equiv0\) ( mod 3 )
Do đó : \(\left(4^{2n}-3^{2n}-7\right)⋮3\) (2)
- Vì \(4^{2n}=16^n\equiv2^n\) ( mod 7 ) ; \(3^{2n}=9^n\equiv2^n\) ( mod 7 )
nên \(4^{2n}-3^{2n}\equiv0\) ( mod 7 ). Do đó : \(\left(4^{2n}-3^{2n}-7\right)⋮7\) (3)
Từ (1);(2);(3) và ( 8,3,7 ) = 1 nên \(\left(4^{2n}-3^{2n}-7\right)⋮8.3.7\)
hay \(\left(4^{2n}-3^{2n}-7\right)⋮168\) \(\left(n\ge1\right)\)
3n3n ⋮⋮ n−1n−1
⇒3(n−1)+3⇒3(n−1)+3 ⋮⋮ n−1n−1
Do 3(n−1)3(n−1) ⋮⋮ n−1⇒3n−1⇒3 ⋮⋮ n−1n−1
⇒n−1∈Ư(3)={±1;±3}⇒n−1∈Ư(3)={±1;±3}
Với n−1=−1⇒n=0n−1=−1⇒n=0
n−1=1⇒n=2n−1=1⇒n=2
n−1=−3⇒n=−2n−1=−3⇒n=−2
n−1=3⇒n=4n−1=3⇒n=4
Vậy n={0;±2;4}
Số chia hết cho 27 có tổng các chữ số chia hết cho 27
Ta có :
\(10^n-36n-1=10^n-1-36n=99...9-36n\) (n chữu số 9)
= 9 . (11...1 - 4n) (n chữ số 1)
Xét 11...1 - 4n = 11...1 - n - 3n
; Mà 11...1 (n chữ số 1) có tổng các chữ số là n
=> 11...1 - n chia hết cho 3
=> 11...1 - n - 3n chia hết cho 3
=> 9.(11...1 - n - 3n) = 9.(11...1 - 4n) chia hết cho 27
hay 10n - 36n - 1 chia hết cho 27