K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2017

KON 'NICHIWA ON" NANOKO: chào cô

20 tháng 10 2020

1111111111111111111

\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)

Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)

Là xong.

20 tháng 6 2019

\(e,\left\{{}\begin{matrix}\left(\frac{x}{y}\right)^3+\left(\frac{x}{y}\right)^2=12\\\left(xy\right)^2+xy=6\end{matrix}\right.\left(x;y\ne0\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{y}=2\\xy\in\left\{2;-3\right\}\end{matrix}\right.\)

\(\frac{x}{y}=2>0\Rightarrow xy>0\Rightarrow xy=2\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{y}=2\\xy=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2y\\2y^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\left(h\right)\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)

20 tháng 6 2019

\(a,\left\{{}\begin{matrix}x^2+\frac{1}{y^2}+\frac{x}{y}=3\\x+\frac{1}{y}+\frac{x}{y}=3\end{matrix}\right.\left(x;y\ne0\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+\frac{1}{y}\right)^2-\frac{x}{y}=3\\\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+\frac{1}{y}=a\\\frac{x}{y}=b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a^2-b=3\\a+b=3\end{matrix}\right.\)

Làm nốt nha

10 tháng 8 2017

Ta có :

 Đặt A=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\left(\frac{x+y}{xy}\right).\frac{1}{\left(\sqrt{x}+\sqrt{y}\right)^2}+\frac{2.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}.\left(\sqrt{x}+\sqrt{y}\right)^3}\right)\)

=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\frac{x+y}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}+\frac{2\sqrt{xy}}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}\right)\)

=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)^2}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}\right)\)

=\(\frac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\frac{1}{xy}\)

=\(\frac{xy.\left(\sqrt{x}-\sqrt{y}\right)}{xy\sqrt{xy}}\)

=\(\frac{\sqrt{x}-\sqrt{y}}{\sqrt{xy}}\)

=\(\frac{\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}}{\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}\)

=\(\frac{\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}}{\sqrt{4-3}}\)

=\(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\)

=> \(A^2=\left(\sqrt{2-\sqrt{3}}-\sqrt{2+\sqrt{3}}\right)^2\)

           =\(2-\sqrt{3}-2\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+2+\sqrt{3}\)

           =\(4-2\sqrt{4-3}\)

           =\(4-2\)

           =\(2\)

=>\(A=\sqrt{2}\)

6 tháng 5 2017

Bài 2:

\(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+2x\right)+\left(y^2+2y\right)=6\\\left(x^2+2x\right)\left(y^2+2y\right)=9\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2+2x=a\\y^2+2y=b\end{matrix}\right.\) thì:\(\left\{{}\begin{matrix}a+b=6\\ab=9\end{matrix}\right.\)

Từ \(a+b=6\Rightarrow a=6-b\) thay vào \(ab=9\)

\(b\left(6-b\right)=9\Rightarrow-b^2+6b-9=0\)

\(\Rightarrow-\left(b-3\right)^2=0\Rightarrow b-3=0\Rightarrow b=3\)

Lại có: \(a=6-b=6-3=3\)

\(\Rightarrow\left\{{}\begin{matrix}x^2+2x=3\\y^2+2y=3\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x+3\right)=0\\\left(y-1\right)\left(y+3\right)=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\\\left[{}\begin{matrix}y=1\\y=-3\end{matrix}\right.\end{matrix}\right.\)

Bài 3:

\(BDT\Leftrightarrow\dfrac{1}{a^2\left(b+c\right)}+\dfrac{1}{b^2\left(c+a\right)}+\dfrac{1}{c^2\left(a+b\right)}\ge\dfrac{3}{2}\)

Áp dụng BĐT AM-GM ta có:

\(\dfrac{1}{a^2\left(b+c\right)}+\dfrac{b+c}{4}\ge2\sqrt{\dfrac{1}{a^2\left(b+c\right)}\cdot\dfrac{b+c}{4}}\)\(=2\sqrt{\dfrac{1}{4a^2}}=\dfrac{1}{a}\)

Tương tự cho 2 BĐT còn lại ta có:

\(\dfrac{1}{b^2\left(c+a\right)}+\dfrac{c+a}{4}\ge\dfrac{1}{b};\dfrac{1}{c^2\left(a+b\right)}+\dfrac{a+b}{4}\ge\dfrac{1}{c}\)

Cộng theo vế 3 BĐT trên ta có:

\(\Rightarrow VT+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

\(\Rightarrow VT+\dfrac{a+b+c}{2}\ge\dfrac{9}{a+b+c}\ge\dfrac{9}{3\sqrt[3]{abc}}\)

\(\Rightarrow VT+\dfrac{3\sqrt[3]{abc}}{2}\ge\dfrac{9}{3\sqrt[3]{abc}}\Rightarrow VT+\dfrac{3}{2}\ge3\left(abc=1\right)\)

\(\Rightarrow VT\ge\dfrac{3}{2}\). Tức là \(\dfrac{1}{a^2\left(b+c\right)}+\dfrac{1}{b^2\left(c+a\right)}+\dfrac{1}{c^2\left(a+b\right)}\ge\dfrac{3}{2}\)

Đẳng thức xảy ra khi \(a=b=c=1\)

6 tháng 5 2017

Làm cho hoàn thiện luôn nè

1)ĐK:x>0

pt trở thành: x2+1+3x\(\sqrt{\dfrac{x^2+1}{x}}\)=10x

<=>\(\dfrac{x^2+1}{x}\)+3\(\sqrt{\dfrac{x^2+1}{x}}\)=10(*)

đặt y=\(\sqrt{\dfrac{x^2+1}{x}}\)(y>0)

(*)<=>y2+3y-10=0

<=>(y+5)(y-2)=0

<=>\(\left[{}\begin{matrix}y=-5\\y=2\end{matrix}\right.\)

vậy y =2(y>0)

<=>\(\sqrt{\dfrac{x^2+1}{x}}\)=2<=>x2+1=4x

<=>x2-4x+1=0<=>\(\left[{}\begin{matrix}x=\sqrt{3}+2\\x=2-\sqrt{3}\end{matrix}\right.\)

3) điều phải cm<=>\(\dfrac{1}{a^2\left(b+c\right)}+\dfrac{1}{b^2\left(a+c\right)}+\dfrac{1}{c^2\left(a+b\right)}\ge\dfrac{3}{2}\)đặt x=\(\dfrac{1}{a}\);y=\(\dfrac{1}{b}\);z=\(\dfrac{1}{c}\)

P<=>\(\dfrac{x^2yz}{y+z}+\dfrac{xy^2z}{x+z}+\dfrac{xyz^2}{x+y}\)

=\(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\)(xyz=1)

đến đây ta có bất đẳng thức quen thuộc trên

A=\(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\)

A+3=\(\dfrac{x+y+z}{y+z}+\dfrac{x+y+z}{x+z}+\dfrac{x+y+z}{x+y}\)

=(x+y+z)(\(\dfrac{1}{y+z}+\dfrac{1}{x+z}+\dfrac{1}{x+y}\))(**)

đặt m=x+y;n=y+z;p=x+z

(**)<=>\(\dfrac{m+n+p}{2}\left(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{p}\right)\ge\dfrac{9}{2}\)(điều suy ra được từ bất đẳng thức cô-si cho 3 số)

=>A\(\ge\)\(\dfrac{3}{2}\)

=>P\(\ge\)\(\dfrac{3}{2}\)

13 tháng 11 2019

\(\Rightarrow\left|a\right|\le1\),\(\left|b\right|\le1\),\(\left|c\right|\le1\)

\(\Rightarrow1-a\ge0\)tương tự 1-b,1-c............

\(\Rightarrow\left(1\right)\ge0\)

dấu = khi a=1b=0c=0 và hoán vị

13 tháng 11 2019

@Võ Hồng Phúc