\(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge12\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

\(\frac{a^2}{b-1}+4\left(b-1\right)\ge4a\)

tương tụ,,,rồi cộng vô

30 tháng 12 2019

a) \(S=\frac{3\left(a^4+b^4+c^4\right)}{\left(a^2+b^2+c^2\right)^2}+\frac{ab+bc+ca}{a^2+b^2+c^2}\ge2\)

\(\Leftrightarrow\frac{3\left(a^4+b^4+c^4\right)-\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)^2}-\frac{a^2+b^2+c^2-ab-bc-ca}{a^2+b^2+c^2}\ge0\)

\(\Leftrightarrow\frac{2\Sigma_{cyc}\left(a+b\right)^2\left(a-b\right)^2}{2\left(a^2+b^2+c^2\right)^2}-\frac{\Sigma_{cyc}\left(a^2+b^2+c^2\right)\left(a-b\right)^2}{2\left(a^2+b^2+c^2\right)^2}\ge0\)

\(\Leftrightarrow\Sigma_{cyc}\left(a^2+4ab+b^2-c^2\right)\left(a-b\right)^2\ge0\)

Giả sử \(a\ge b\ge c\Rightarrow c^2+4ca+a^2-b^2\ge0\)

Ta có: \(VT=\left(a^2+4ab+b^2-c^2\right)\left(a-b\right)^2+\left(b^2+4bc+c^2-a^2\right)\left(b-c\right)^2+\left(c^2+4ca+a^2-b^2\right)\left(a-b+b-c\right)^2\)

\(=\left(2a^2+4ab+4ca\right)\left(a-b\right)^2+\left(2c^2+4ca+4bc\right)\left(b-c\right)^2+\left(c^2+4ca+a^2-b^2\right)\left(a-b\right)\left(b-c\right)\ge0\)Ta có đpcm.

Đẳng thức xảy ra khi \(a=b=c\)

30 tháng 12 2019

b) \(\Leftrightarrow\frac{a^3+b^3+c^3-3abc}{abc}-\frac{9\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2}\ge0\)

\(\Leftrightarrow\left(a^2+b^2+c^2-ab-bc-ca\right)\left(\frac{a+b+c}{abc}-\frac{9}{a^2+b^2+c^2}\right)\ge0\) (phân tích cái tử của phân thức thức nhất thành nhân tử rồi nhóm lại)

\(\Leftrightarrow\left[\frac{3}{4}\left(a-b\right)^2+\frac{1}{4}\left(a+b-2c\right)^2\right]\left(\frac{\left(a+b+c\right)\left(a^2+b^2+c^2\right)-9abc}{abc\left(a^2+b^2+c^2\right)}\right)\ge0\) (đúng)

Đẳng thức xảy ra khi \(a=b=c\)

P/s: Đáng ráng phân tích tiếp cái ngoặc phía sau cho đẹp nhưng lười quá nên thôi:v (dùng Cauchy nó cũng đúng rồi nên phân tích làm gì cho mệt)

30 tháng 10 2015

\(\frac{3}{ab+bc+ca}=\frac{9}{3\left(ab+bc+ca\right)}\)

áp dụng hệ quả bun nhi a ta có: \(A\ge\frac{\left(3+1\right)^2}{\left(a^2+b^2+c^2+2ab+2bc+2ca\right)+ab+bc+ca}\)\(\ge\frac{16}{\left(a+b+c\right)^2+\frac{\left(a+b+c\right)^2}{3}}=12\)

bằng khi a=b=c=1/3

31 tháng 10 2015

tạ duy phương: 

\(\frac{a_1^2}{x_1}+\frac{a^2_2}{x_2}\ge\frac{\left(a_1+a_2\right)^2}{x_1+x_2}\)tương tự áp dụng cho nhiều số

6 tháng 7 2018

áp dụng bất đẳng thức côsi 

\(\frac{a^2}{b-1}+4\left(b-1\right)\ge2\sqrt{\frac{a^2}{b-1}\cdot4\left(b-1\right)}=4a\)

\(\frac{b^2}{c-1}+4\left(c-1\right)\ge4b\)

\(\frac{c^2}{a-1}+4\left(a-1\right)\ge4c\)

cộng vế theo vế

\(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}+4\left(a-1\right)+4\left(b-1\right)+4\left(c-1\right)\ge4a+4b+4c\)

\(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge4\left(a+b+c\right)-4\left(a+b+c\right)+4\cdot3=12\)(đpcm)

6 tháng 7 2018

Cách khác:

\(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)-3}\)

Đặt \(a+b+c=x>3\)

Ta cần chứng minh

\(\frac{x^2}{x-3}\ge12\)

\(\Leftrightarrow\frac{\left(x-6\right)^2}{x-3}\ge0\)(đúng)

Vậy ta có điều phải chứng minh

NV
17 tháng 5 2019

Ta có: \(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge\frac{\left(a+b+c\right)^2}{a+b+c-3}\)

Vậy ta chỉ cần chứng minh \(\frac{\left(a+b+c\right)^2}{a+b+c-3}\ge12\) với \(a;b;c>1\)

Thật vậy, do \(a;b;c>1\Rightarrow a+b+c-3>0\) biến đổi tương đương ta có:

\(\Leftrightarrow\left(a+b+c\right)^2\ge12\left(a+b+c-3\right)\)

\(\Leftrightarrow\left(a+b+c\right)^2-12\left(a+b+c\right)+36\ge0\)

\(\Leftrightarrow\left(a+b+c-6\right)^2\ge0\) (luôn đúng)

BĐT được chứng minh, dấu "=" xảy ra khi \(a=b=c=2\)

23 tháng 3 2021

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge\frac{\left(a+b+c\right)^2}{a+b+c-3}\)(1)

Đặt a + b + c - 3 = x 

Vì a,b,c > 1 => x > 0

=>  \(\frac{\left(a+b+c\right)^2}{a+b+c-3}=\frac{\left(x+3\right)^2}{x}=\frac{x^2+6x+9}{x}=x+6+\frac{9}{x}\ge2\sqrt{x\cdot\frac{9}{x}}+6=12\)( AM-GM )

=> \(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge\frac{\left(a+b+c\right)^2}{a+b+c-3}\ge12\)

=> \(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge12\left(đpcm\right)\)

Đẳng thức xảy ra <=> x = 3 => a=b=c=2

8 tháng 8 2019

1. Vì m nguyên nên \(m^2+m+1\) nguyên

Để C nguyên thì \(\sqrt{m^2+m+1}\) nguyên

\(\Rightarrow m^2+m+1\) là một số chính phương

Đặt \(m^2+m+1=k^2\)( \(k\in Z\) )

\(\Leftrightarrow4m^2+4m+4=4k^2\)

\(\Leftrightarrow4m^2+4m+1-4k^2+3=0\)

\(\Leftrightarrow\left(2m+1\right)^2-\left(2k\right)^2=-3\)

\(\Leftrightarrow\left(2m+2k+1\right)\left(2m-2k+1\right)=-3=\left(-1\right)\cdot3=1\cdot\left(-3\right)\)

Trường hợp 1:

\(\left\{{}\begin{matrix}2m+2k+1=-1\\2m-2k+1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+k=-1\\m-k=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=0\\k=-1\end{matrix}\right.\)

Các trường hợp còn lại tương tự nhé :)

8 tháng 8 2019

tth, @Akai Haruma

giúp e vs! e cần trước 3h30ph chiều nay ạ!