K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2018

Ta có : 

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)

\(=\)\(\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{10^2-9^2}{9^2.10^2}\)

\(=\)\(\frac{2^2}{1^2.2^2}-\frac{1^2}{1^2.2^2}+\frac{3^2}{2^2.3^2}-\frac{2^2}{2^2.3^2}+\frac{4^2}{3^2.4^2}-\frac{3^2}{3^2.4^2}+...+\frac{10^2}{9^2.10^2}-\frac{9^2}{9^2.10^2}\)

\(=\)\(\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}\)

\(=\)\(1-\frac{1}{10^2}\)

\(=\)\(\frac{100-1}{100}\)

\(=\)\(\frac{99}{100}\)

Chúc bạn học tốt ~ 

=3/1.4+5/4.9+7/9.16+......+19/81.100

=(1/1-1/4)+(1/4-1/9)+........+(1/81-1/100)

=1-1/100

=99/100<1(đpcm)

18 tháng 9 2017

\(\frac{3}{1^22^2}+\frac{5}{2^23^2}+\frac{7}{3^24^2}+....+\frac{19}{9^210^2}< 1\)

\(A=\frac{3}{1^22^2}+\frac{5}{2^23^2}+\frac{7}{3^24^2}+....+\frac{19}{9^210^2}\)

A=\(\frac{1}{1}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}\)

A=\(1-\frac{1}{10^2}\)

A=\(1-\frac{1}{100}\)

A=\(\frac{99}{100}< 1\)

\(\Rightarrow\frac{3}{1^22^2}+\frac{5}{2^23^2}+\frac{7}{3^24^2}+....+\frac{19}{9^210^2}< 1\)

4 tháng 1 2016

Không khó lắm đâu, để mình. Ta có:

\(\frac{3}{1^2.2^2}+\frac{5}{2^2+3^2}+....+\frac{19}{9^2.10^2}\)

\(=\frac{3}{1.4}+\frac{5}{4.9}+.....+\frac{19}{81.100}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+...+\frac{1}{81}-\frac{1}{100}\)

\(=1-\frac{1}{100}<1\)

 

 

 

 

 

Mình chứng minh A<1 cho bạn nha !

A = \(\frac{3}{1.4}\)\(\frac{5}{4.9}\)+ .....+\(\frac{19}{81.100}\)= 1 - \(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{9}\)+ ......+ \(\frac{1}{81}\)-  \(\frac{1}{100}\)= 1 - \(\frac{1}{100}\)\(\frac{99}{100}\)< 1

Vậy  A <1 (đpcm)

Phải là CMR : A < 1 chứ

5 tháng 12 2015

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+..+\frac{10^2-9^2}{9^2.10^2}\)

\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}=1-\frac{1}{10^2}<1\left(đpcm\right)\)

nhớ tick nhé

15 tháng 9 2016

Mình sửa lại là < 1 nha mấy bạn. Ai nhanh nhất mình k cho!

15 tháng 9 2016

đề gì thế???

15 tháng 12 2015

A=3 /1^2.2^2 +5 / 2^2.3^2 +7/3^2.4^2 +...+ 19 /9^2.10^2

=1/1^2-1/2^2+1/2^2-1/3^2+1/3^2-1/4^2+....+1/9^2-1/10^2

=1/1^2-1/10^2

=99/100

=0,99

vậy A< 1