Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯC ( 30n + 1 ; 15n + 2 )
=> 30n + 1 ⋮ d => 2.( 30n + 1 ) ⋮ d
=> 15n + 2 ⋮ d => 4.( 15n + 2 ) ⋮ d
=> [ 2.( 30n + 1 ) - 4.( 15n + 2 ) ] ⋮ d
=> [ ( 60n + 2 ) - ( 60n + 8 ) ] ⋮ d
=> - 6 ⋮ d => d = { - 6 ; - 1 ; 1 ; 6 }
Vì ƯC ( 30n + 1 ; 15n + 2 ) = { - 6 ; - 1 ; 1 ; 6 } nên 30n + 1 / 15n + 2 không là p/s tối giản
\(\frac{30n+1}{15n+2}\Leftrightarrow\left(30n+1;15n+2\right)=1\)
Đặt \(\left(30n+1;15n+2\right)\) = d
\(\Leftrightarrow d=4\)
=> tối giản
a, \(A=\frac{2n+5}{n-1}=\frac{2n-2+7}{n-1}=\frac{2\left(n-1\right)+7}{n-1}=\frac{2\left(n-1\right)}{n-1}+\frac{7}{n-1}=2+\frac{7}{n-1}\)
Để A nguyên <=> n - 1 thuộc Ư(7) = {1;-1;7;-7}
n-1 | 1 | -1 | 7 | -7 |
n | 2 | 0 | 8 | -6 |
Vậy...
b, Gọi d là UCLN(30n+27,15n+13)
Ta có: 30n + 27 chia hết cho d
15n + 13 chia hết cho d => 2(15n+13) chia hết cho d => 30n+26 chia hết cho d
=> 30n+27 - (30n+26) chia hết cho d
=> 30n+27 - 30n-26 chia hết cho d
=> 1 chia hết cho d => d = {1;-1}
Vậy \(\frac{30n+27}{15n+13}\)tối giản
Gọi d = ( 12n+1 , 30n + 2)
Ta có: 12n+ 1 chia hết cho d 5(12n +1) chia hết cho d 60n +5 chia hết cho d
=> =>
30n+ 2 chia hết cho d 2(30n + 2 ) chia hết cho d 60n ++ 4 chia hết cho d
=> (60n +5 ) - ( 60n + 4 ) chia hết cho d => 1 chia hết ch d => d = 1
Vậy phân số đó tối giản
k mình nha
a,Gọi d là ƯCLN của tử và mẫu.Ta có
15n+1 chia hết cho d =>30n+2 chia hết cho d
30n+1 chia hết cho d =>30n+1 chia hết cho d
=>(30n+2)-(30n+1) chia hết cho d=1 chia hết cho d=>d=1
Vậy WCLN của phân số đó là 1(đpcm)
a) Đặt \(d=\left(15n+1,30n+1\right)\).
Suy ra \(\hept{\begin{cases}15n+1⋮d\\30n+1⋮d\end{cases}}\Rightarrow2\left(15n+1\right)-\left(30n+1\right)=1⋮d\)
\(\Rightarrow d=1\).
Suy ra đpcm.
b) Đặt \(d=\left(n^3+3n,n^4+3n^2+1\right)\).
Suy ra \(\hept{\begin{cases}n^3+3n⋮d\\n^4+3n^2+1⋮d\end{cases}}\Rightarrow\left(n^4+3n^2+1\right)-n\left(n^3+3n\right)=1⋮d\)
\(\Rightarrow d=1\).
Suy ra đpcm.
a) \(\frac{15n^2+8n+6}{30n^2+21+13}\)
Gọi d là ước chung lớn nhất của \(15n^2+8n+6\) và \(30n^2+21+13\)
⇒ \(15n^2+8n+6⋮d\) ;\(30n^2+21+13⋮d\)
Ta có:
\(15n^2+8n+6⋮d\)
⇒ \(30n^2+16n+12⋮d\)
Mà \(30n^2+21n+13⋮d\)
⇒ \(5n+1⋮d\) (1)
⇒ \(3n\left(5n+1\right)\text{ =}15n^2+3n⋮d\)
⇒ \(15n^2+8n+6-15n^2-3n=5n+6⋮d\)(2)
Từ (1) và (2), ta có:
\(5⋮d\)
mà \(5n+6=5\left(n+1\right)+1⋮d\)
Nên 1 ⋮ d
⇒ ĐPCM.
Gọi ƯCLN(15n+1;30n+1)=d
theo bài ra ta có 15n+1-(30n+1) chia hết cho d
2(15n+1)-(30n+1) chia hết cho d
30n+2-30n-1 chia hết cho d
1 chia hết cho d
d thuộc Ư(1)
vậy ƯCLN(15n+1;30n+1)=1
vậy phân số trên tối giản với mọi n
Gọi ƯC (15n+1,30n+1) là d
\(\hept{\begin{cases}\left(15n+1\right):d\\\left(30n+1\right):d\end{cases}}\Rightarrow\left(15n+1-30n+1\right):d\)
Ta có :
2(15n+1)-30n+1:d
30n+2-30n+1:d
1:d
\(\Rightarrow\)d=1
Vậy \(\frac{15n+1}{30n+1}\)là phân số tối giản