K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(a=\sqrt{2+\sqrt{2+...+\sqrt{2}}}\)(có n dấu căn )

\(\Rightarrow a^2=2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}\)(có n-1 dấu căn)

\(\Rightarrow\sqrt{2+\sqrt{2+...+\sqrt{2}}}=a^2-2\)(có n-1 dấu căn)

Ta có \(A=\frac{2-\sqrt{2+\sqrt{2+...+\sqrt{2}}}}{2-\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\)(ở tử có n dấu căn : ở mẩu có n-1 dấu căn )

\(A=\frac{2-a}{2-\left(a^2-2\right)}=\frac{2-a}{4-a^2}=\frac{1}{a+2}\)

Dễ thấy \(\sqrt{2}a< \sqrt{2+\sqrt{2+...+\sqrt{2+2}}}\)(có n dấu căn)

            \(1,4< a< 2\)

Suy ra \(3,4< a+2< 4\)

\(\frac{1}{3,4}>\frac{1}{a+2}>\frac{1}{4}\)

\(\frac{3}{10}>\frac{1}{a+2}>\frac{1}{4}\)hay\(\frac{1}{4}< A< \frac{3}{10}\)(1)

Từ (1) suy ra ĐPCM

30 tháng 10 2019

gải phương trình \(\sqrt[3]{x}-3\sqrt[3]{x}=20\)

30 tháng 10 2019

gải phương trình\(x\sqrt[]{\frac{1}{x}}-2x\sqrt[3]{x}=20\)

22 tháng 11 2019

Có nhầm đề không vậy? Ở tử có n dấu căn, ở mẫu có n-1

dấu căn . giả sử có một biểu thức bất kì: \(\frac{\sqrt{2+\sqrt{2}}}{\sqrt{2}}>1\)

vậy sao chứng minh?

23 tháng 11 2019

Đề không nhầm đâu bạn à !

30 tháng 6 2019

Em thử nhé, không chắc đâu ak. Nhất là chỗ "thực hiện n lần như vậy" em ko rõ là thực hiện n hay là n - 1 lần nữa ... Mong là đúng ạ.

Gọi biểu thức trên là A

Đặt \(\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}=a\left(\text{n dấu căn }\right)\)

Suy ra \(a^2-2=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\left(\text{n - 1 dấu căn }\right)\)

Suy ra \(A=\frac{2-a}{2-\left(a^2-2\right)}=\frac{2-a}{4-a^2}=\frac{2-a}{\left(2-a\right)\left(2+a\right)}=\frac{1}{2+a}\)

Ta cần chứng minh \(\frac{1}{2+a}>\frac{1}{4}\Leftrightarrow2+a< 4\Leftrightarrow a< 2\)

Thật vậy,ta có: \(a=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}}\)

\(< \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}}\)

\(=\sqrt{2+\sqrt{4}}=\sqrt{4}=2\) (thực hiện n lần như vậy)

Suy ra đpcm.