Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S\(=\)\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{62}\right)\)\(+\)\(\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+....+\frac{1}{63}\right)\)
ta thấy S1=\(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{62}\)có 31 số
\(\frac{1}{61}< \frac{1}{2},\frac{1}{62}< \frac{1}{4}...\)\(\Rightarrow\)S1 > \(\frac{1}{62}+\frac{1}{62}+..+\frac{1}{62}\)( có 31 số ) \(=\frac{31}{62}=\frac{1}{2}\)
S2 = \(\frac{1}{3}+\frac{1}{5}+...+\frac{1}{63}\)( có 31 số )
ta thấy \(\frac{1}{63}< \frac{1}{3},\frac{1}{63}< \frac{1}{5}...\)\(\Rightarrow\)S2 > \(\frac{1}{63}+\frac{1}{63}+...+\frac{1}{63}\)( có 31 số ) \(=\frac{31}{63}=\frac{1}{3}\)
S1 + S2 > \(\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)
=> S > 2
Ta có 1/3+1/4>1/4+1/4=1/2
Suy ra , 1/2+1/3+1/4>1
* 1/5+1/6+1/7+1/8>1/8+1/8+1/8+1/8=4/8=1/2 (1)
*1/9+1/10+1/11+...+1/17>1/17+1/17+1/17+...+1/17(9 p/s1/7)=9/17 >8.5/17=1/2 (2)
Từ (1) và (2) , suy ra : 1/5+1/6+1/7+...+1/17 > 1/2+1/2 = 1
Vậy: 1/2+1/3+1/4+...+1/17 > 2
Mà 2 < 1/2+1/3+1/4+...+1/17 < 1/2+1/3+1/4+...+1/63
Suy ra : 1/2+1/3+1/4+...+1/63 > 2 ( ĐPCM )
1/2+1/3+1/4+...+1/63>2
A=1/1x2+1/1x3+1/1x4+...+1/1x63
A=1/2-1/63
A=61/126
suy ra 61/126 >2
Bạn xét :
1/2 + 1/3 + 1/4 > 1
Thì : 1/5 + 1/6 + 1/7 + 1/8 + ...> 1
Vậy : 1/2 + 1/3 + 1/4 + ... 1/63 > 2