K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2018

Ta có :

\(a^2-\left(b-c\right)^2\le a^2\)

\(\Leftrightarrow\left(a+b-c\right)\left(a-b+c\right)\le a^2\) (1)

\(b^2-\left(c-a\right)^2\le b^2\)

\(\Leftrightarrow\left(b+c-a\right)\left(b-c+a\right)\le b^2\) (2)

\(c^2-\left(a-b\right)^2\le c^2\)

\(\Leftrightarrow\left(c+a-b\right)\left(c-a+b\right)\le c^2\) (3)

Từ 1 ; 2 ; 3 ta có :

\(\left\{{}\begin{matrix}\left(a+b-c\right)\left(a-b+c\right)\le a^2\\\left(b+c-a\right)\left(b-c+a\right)\le b^2\\\left(c+a-b\right)\left(c-a+b\right)\le c^2\end{matrix}\right.\)

Nhân vế theo vế ta được :

\(\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\le\left(abc\right)^2\)

\(\Rightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)

21 tháng 4 2018

Còn lớn hơn 0 nữa

15 tháng 10 2017

dễ ợt mày ngu thế

8 tháng 2 2020

Ta biến đổi: \(4\left(a^3+b^3\right)-\left(a+b\right)^3+4\left(b^3+c^3\right)-\left(b+c\right)^3+4\left(c^3+a^3\right)-\left(c+a\right)^3\ge0\)

Xét: \(4\left(a^3+b^3\right)-\left(a+b\right)^3=\left(a+b\right)\left[4\left(a^2-ab+b^2\right)-\left(a+b\right)^2\right]\)

\(=3\left(x+b\right)\left(a-b\right)^2\ge0\)

Tương tự với: \(4\left(b^3+c^3\right)-\left(b+c\right)^3\)\(4\left(c^3+a^3\right)-\left(c+a\right)^3\)

Ta suy ra đpcm.

Đẳng thức xảy ra \(\Leftrightarrow a=b=c\)

8 tháng 2 2020

Phương trình đưa được về dạng ax + b = 0

AH
Akai Haruma
Giáo viên
3 tháng 12 2017

Lời giải:
Áp dụng BĐT AM-GM:

\(a^3+b^3+b^3\geq 3ab^2\)

\(a^3+a^3+b^3\geq 3a^2b\)

\(\Rightarrow 3(a^3+b^3)\geq 3ab(a+b)\)

\(\Leftrightarrow 4(a^3+b^3)\geq a^3+b^3+3ab(a+b)=(a+b)^3\)

Tương tự:

\(\left\{\begin{matrix} 4(b^3+c^3)\geq (b+c)^3\\ 4(c^3+a^3)\geq (c+a)^3\end{matrix}\right.\)

Cộng theo vế:

\(8(a^3+b^3+c^3)\geq (a+b)^3+(b+c)^3+(c+a)^3\)

Do đó ta có đpcm

Dấu bằng xảy ra khi a=b=c

16 tháng 4 2020

*học ngu chỉ làm được câu b. lười quá nên làm tắt*

Biến đổi thành

4(a3+b3)-(a+b)3+4(a3+b3)-(b+c)3+4(c3+a3)-(c+a)3 >=0

xét 4(a3+b3)-(a+b)=(a+b)[4(a2-ab+b2)-(a+b)2]

                                =3(a+b)(a-b)2 >=0

tương tự với \(\hept{\begin{cases}4\left(b^3+c^3\right)-\left(b+c\right)^3\\4\left(c^3+a^2\right)-\left(a+c\right)^3\end{cases}}\)

=> đpcm

đẳng thức xảy ra khi a=b=c

29 tháng 4 2020

Ta có : \(4\left(a^3+b^3\right)=4a^3+4b^3\)(1)

\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^2\)(2)

Từ 1 và 2 \(< =>3a^3+3b^3\ge3a^2b+3ab^2\)

\(< =>a^3+b^3\ge a^2b+ab^2\)

\(< =>a+b\ge b+a\left(đpcm\right)\)

Ko chắc lắm vì t ms lớp 6 :((

1 tháng 3 2018

Xét : a^3+b^3-ab.(a+b)

= (a+b).(a^2-ab+b^2)-ab.(a+b)

= (a+b).(a^2-2ab+b^2)

= (a+b).(a-b)^2 >= 0 ( vì a;b > 0 )

=> a^3+b^3 >= ab.(a+b)

<=> (a+b)^3 = a^3+b^3+3ab.(a+b) < = a^3+b^3+3a^3+3b^3 = 4a^3+4b^3

Tương tự ........

=> (a+b)^3 + (b+c)^3 + (c+a)^3 < = 8a^3+8b^3+8c^3 = 8.(a^3+b^3+c^3)

=> ĐPCM

Tk mk nha

4 tháng 4 2020

3 bài thì thấy 1 bài có trên mạng rồi, buồn thật:( Bài cuối từ từ tí mở Maple lên check đề. Thấy lạ lạ không dám làm ngay:v

Bài 1: Ez game, chỉ là Buffalo Way, mà Ji Chen (tác giả BĐT Iran 96 có giải rồi, mình không giải lại): hard inequalities

Bài 2: Đặt \(\left(a;b;c\right)=\left(\frac{3x}{x+y+z};\frac{3y}{x+y+z};\frac{3z}{x+y+z}\right)\) rồi quy đồng lên xem.

Bài 3: Tí check đề cái đã.

4 tháng 4 2020

Bài 3: Biết lắm mà: Check: \(a=b=1;c=\frac{1}{2}\) thì \(VT-VP=-\frac{1}{8}< 0\)

P/s: Nếu bạn sửa đề, hãy đăng vào bên dưới câu hỏi bạn nhé! Để người đọc còn hiểu mình đang trả lời cái nào:D

25 tháng 8 2020

Hmm...

Ta đánh giá:

\(\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{a}{a+\sqrt{ab}+\sqrt{ac}}=\frac{\sqrt{a}.\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\sqrt{a}}\)

\(=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\) (Áp dụng BĐT Bunhia)

Tương tự CM được:

\(\frac{b}{b+\sqrt{\left(b+c\right)\left(b+a\right)}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\) ; \(\frac{c}{c+\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)

Cộng vế 3 BĐT trên lại ta được:

\(Vt\le\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)

Dấu "=" xảy ra khi: \(a=b=c\)

Ko hiểu chỗ nào ib riêng:)

25 tháng 8 2020

Ta có \( {\displaystyle \displaystyle \sum }cyc\)\(\frac{ab}{\sqrt{\left(1-c\right)^3\left(1+c\right)}}=\Sigma_{cyc}\frac{ab}{\left(a+b\right)\sqrt{1-c^2}}\)\(=\Sigma_{cyc}\frac{ab}{\left(a+b\right)\sqrt{\left(a+b+c\right)^2-c^2}}=\Sigma_{cyc}\frac{ab}{\left(a+b\right)\sqrt{a^2+b^2+2\left(ab+bc+ca\right)}}\)

Áp dụng bất đẳng thức AM-GM có \(\hept{\begin{cases}a^2+b^2+2\left(ab+bc+ca\right)\ge2\left(ab+bc\right)+2\left(ab+ca\right)\\a+b\ge2\sqrt{ab}\end{cases}}\)

Do đó ta có \(\Sigma_{cyc}\frac{ab}{\left(a+b\right)\sqrt{a^2+b^2+2\left(ab+bc+ca\right)}}\le\frac{1}{2}\Sigma_{cyc}\sqrt{\frac{ab}{2\left(ab+bc\right)+2\left(ab+ca\right)}}\)

\(\le\frac{1}{4\sqrt{2}}\Sigma_{cyc}\sqrt{\frac{ab}{ab+bc}+\frac{ab}{ab+ca}}\le\frac{1}{4\sqrt{2}}\sqrt{3}\sqrt{\Sigma_{cyc}\left(\frac{ab}{ab+bc}+\frac{ab}{ab+ca}\right)}\)

Đẳng thức xảy ra khi a=b=c=\(\frac{1}{3}\)