Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(3^{4n+2}+2.4^{3n+1}\)
\(=3^{4n}.3^2+2.4^{3n}.4\)
\(=64^n.9+64^n.8\)
\(=64^n.\left(9+8\right)\)
\(=64^n.17\)
\(vì\) \(17⋮17\)nên \(64^n.17⋮17\)
Vậy \(3^{4n+2}\)\(+2.4^{3n+1}⋮17\)
=\(3^{4n}.3^2+2.4^{3n}.4\)
\(=81^n\cdot9+64^n\cdot8\)
\(=\left(64+17\right)^n.3^2+64^n\cdot8\)
\(=64^n.17^n.9+64^n\cdot8\)
\(64^n\left(17^n+8+9\right)⋮17\)
c) n2 + 1 chia hết cho n - 1 (n thuộc N, n khác 1)
\(\Rightarrow\frac{n^2+1}{n-1}\in N\Rightarrow\frac{n^2+1}{n-1}=\frac{n^2+n-n-1+2}{n-1}=\frac{n\left(n+1\right)-\left(n+1\right)+2}{n-1}=\frac{\left(n-1\right)\left(n+1\right)+2}{n-1}=n+1+\frac{2}{n-1}\in N\)
Mà \(n+1\in N\)\(\Rightarrow\frac{2}{n-1}\in N\Rightarrow\)2 chia hết cho n - 1
Từ đây bạn tự làm tiếp nha........
C1: Đặt tính chia ra:
\(\left(n^3-3n^2-1\right):\left(n^2+n+1\right)\)
C2: Dùng quy nạp
Giả sử n=k, chứng minh đúng với k+1