Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đê yêu cầu CM \(a^{2007}+b^{2007}+a^{2009}+b^{2009}\) chia hết cho 5
\(x^2-x-1=0\)
Ta có \(\Delta=b^2-4ac=\left(-1\right)^2-4.1.\left(-1\right)=1+4=5>0\); \(\sqrt{\Delta}=\sqrt{5}\)
Phuông trình có 2 nghiệm phân biệt
\(a=x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{1+\sqrt{5}}{2}\)
\(b=x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{1-\sqrt{5}}{2}\)
Ta có \(a^{2007}+b^{2007}+a^{2009}+b^{2009}\)
\(\Leftrightarrow a^{2007}.\left(1+a^2\right)+b^{2007}.\left(1+b^2\right)\)
\(\Leftrightarrow\left(\frac{1+\sqrt{5}}{2}\right)^{2007}.\left(1+\left(\frac{1+\sqrt{5}}{2}\right)^2\right)+\left(\frac{1-\sqrt{5}}{2}\right)^{2007}.\left(1+\left(\frac{1-\sqrt{5}}{2}\right)^2\right)\)
\(\Leftrightarrow\left(\frac{1+\sqrt{5}}{2}\right)^{2007}.\left(1+\frac{3+\sqrt{5}}{2}\right)+\left(\frac{1-\sqrt{5}}{2}\right)^{2007}.\left(1+\frac{3-\sqrt{5}}{2}\right)\)
\(\Leftrightarrow\left(\frac{1+\sqrt{5}}{2}\right)^{2007}.\left(\frac{5+\sqrt{5}}{2}\right)+\left(\frac{1-\sqrt{5}}{2}\right)^{2007}.\left(\frac{5-\sqrt{5}}{2}\right)\)
\(\Leftrightarrow\sqrt{5}.\left(\frac{1+\sqrt{5}}{2}\right)^{2008}+\sqrt{5}.\left(\frac{1-\sqrt{5}}{2}\right)^{2008}\)
\(\Leftrightarrow\sqrt{5}.\left[\left(\frac{1+\sqrt{5}}{2}\right)^{2008}+\left(\frac{1-\sqrt{5}}{2}\right)^{2008}\right]⋮5\) (ĐPCM)
Nhớ k cho mình nhé
Có VT = n3- n + 2017n = n(n2-1) + 2017n = n(n-1)(n+1) + 2017n
Vì (n-1)n(n+1) là tích 3 số tự nhiên liên tiếp nên \(\text{(n-1)n(n+1)}⋮3\)
mà \(2007⋮3\Rightarrow2007n⋮3\)
suy ra \(VT⋮3\) (1)
Lại có 2008 : 3 dư 1=> 20082007:3 dư 1
=> 20082007+1 : 3 dư 2
suy ra VP : 3 dư 2 (2)
Từ (1) và (2) => không tìm được n TM đkđb (đpcm)
Lời giải:
Theo định lý Fermat nhỏ, với $(2007,11)=1$ ta có:
\(2007^{10}\equiv 1\pmod {11}\)
\(\Rightarrow 2007^{2007}=(2007^{10})^{200}.2007^7\equiv 1^{200}.2007^7\equiv 2007^7\pmod {11}(1)\)
\(2007\equiv 5\pmod {11}\)
\(\Rightarrow 2007^7\equiv 5^7=5^3.5^3.5=125.125.5\equiv 4.4.5\equiv 3\pmod {11}(2)\)
Từ \((1);(2)\Rightarrow 2007^{2007}\equiv 3\pmod {11}\) hay $007^{2007}$ chia $11$ dư $3$
Ta có:\(\left(\sqrt[]{x^2+2007}+x^{ }\right)\left(\sqrt{x^2+2007}-x\right)\left(\sqrt{y^2+2007}+y\right)\left(\sqrt{y^2+2007}-y\right)=2007\left(\sqrt{x^2+2007}-x\right)\left(\sqrt{y^2+2007}-y\right)\)
\(\Rightarrow2007^2=2007\left(\sqrt{x^2+2007}-x\right)\left(\sqrt{y^2+2007}-y\right)\)
\(\Rightarrow\left(\sqrt{x^2+2007}-x\right)\left(\sqrt{y^2+2007}-y\right)=2007\)
\(\Rightarrow xy-x\sqrt{y^2+2007}-y\sqrt{x^2+2007}+\sqrt{\left(x^2+2007\right)\left(y^2+2007\right)}=2007\)(1)
và \(\left(\sqrt[]{x^2+2007}+x^{ }\right)\left(\sqrt{y^2+2007}+y\right)=xy+x\sqrt{y^2+2007}+y\sqrt{x^2+2007}+\sqrt{\left(x^2+2007\right)\left(y^2+2007\right)}=2007\)(2)
cộng (1) và (2)
\(\Rightarrow xy+\sqrt{\left(x^2+2007\right)\left(y^2+2007\right)}=2007\)
\(\Leftrightarrow\sqrt{\left(x^2+2007\right)\left(y^2+2007\right)}=2007-xy\)
\(\Rightarrow x^2y^2+2007\left(x^2+y^2\right)+2007^2=2007^2-2.2007xy+x^2y^2\)
\(\Rightarrow x^2+y^2=-2xy\Rightarrow\left(x+y\right)^2=0\Rightarrow M=0\)
Ta có
\(2007^{2007}=\left(2007^4\right)^{501}.2007^3\)
Ta có: \(2007^4\)có số tận cùng là 1 \(\Rightarrow\left(2007^4\right)^{501}\)có số tận cùng là 1
\(2007^3\)có số tận cùng là 3
\(\Rightarrow\left(2007^4\right)^{501}.2007^3\)có số tận cùng là 3
Ta lại có: 2002 có số tận cùng là 2
\(\Rightarrow2007^{2007}+2002\)có số tận cùng là 5 nên chia hết cho 5
Vậy \(2007^{2007}+2002\)là hợp số vì nó chia được cho chính nó và chia hết cho 5
hợp số là j vậy