Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) \(F\left(x\right)+G\left(x\right)-H\left(x\right)\)
\(=4x^2+3x-2+3x^2-2x+5-\left[x\left(5x-2\right)+3\right]\)
\(=4x^2+3x-2+3x^2-2x+5-\left(5x^2-2x+3\right)\)
\(=4x^2+3x-2+3x^2-2x+5-5x^2+2x-3\)
\(=2x^2+3x\)
Để \(F\left(x\right)+G\left(x\right)-H\left(x\right)=0\)
\(\Leftrightarrow2x^2+3x=0\)
\(\Leftrightarrow x\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b) \(F\left(x\right)-3x+5\)
\(=4x^2+3x-2-3x+5\)
\(=4x^2+3\)
Vì \(x^2\ge0;\forall x\)
\(\Leftrightarrow4x^2\ge0;\forall x\)
\(\Leftrightarrow4x^2+3\ge3>0;\forall x\)
Vậy ...
P= x^8 - x^5 + x^2 - x + 1
=x8-x5+(x-1/2)2+3/4
*Với x\(\ge\)0 =>x8\(\ge\)x5=>x8-x5\(\ge\)0
=>P=x8-x5+(x-1/2)2+3/4>0
*Với x<0=>x5<0 =>-x5>0=>x8-x5>0
=>P=x8-x5+(x-1/2)2+3/4>0
Vậy P luôn nhận giá trị dương
\(f\left(4\right)+2f\left(\frac{1}{4}\right)=4^2=16\)(1)
\(f\left(\frac{1}{4}\right)+2f\left(\frac{1}{\frac{1}{4}}\right)=\left(\frac{1}{4}\right)^2\)
\(\Rightarrow f\left(\frac{1}{4}\right)+2f\left(4\right)=\frac{1}{16}\Rightarrow2f\left(\frac{1}{4}\right)+4f\left(4\right)=\frac{1}{8}\)(2)
Từ (1) và (2), ta được:
\(2f\left(\frac{1}{4}\right)+4f\left(4\right)-f\left(4\right)-2f\left(\frac{1}{4}\right)=\frac{1}{8}-16\)
\(\Rightarrow3f\left(4\right)=\frac{-127}{8}\Rightarrow f\left(4\right)=\frac{-127}{24}\)
Giải hệ 3 ẩn ba pt =>a,b,c =>đề đúng =>a,b,c phải nguyên=>đpcm