Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x+y+1=0 suy ra x+y=1
Làm câu A nhé B,C tương tự
A= x^2.(x+y-2)-(xy+y^2-2y)+(y+x-1)=0-y.(x+y-2)+1=1
Hok tốt
1.
\(-3x^5y^4+3x^2y^3-7x^2y^3+5x^5y^4\)
\(=(-3x^5y^4+5x^5y^4)+(3x^2y^3-7x^2y^3)\)
\(=2x^5y^4-4x^2y^3\)
2.
\(\frac{1}{2}x^4y-\frac{3}{2}x^3y^4+\frac{5}{3}x^4y-x^3y^4\)
\(=(\frac{1}{2}x^4y+\frac{5}{3}x^4y)-(\frac{3}{2}x^3y^4+x^3y^4)\)
\(=\frac{13}{6}x^4y-\frac{5}{2}x^3y^4\)
3.
\(5x-7xy^2+3x-\frac{1}{2}xy^2\)
\(=(5x+3x)-(7xy^2+\frac{1}{2}xy^2)\)
\(=8x-\frac{15}{2}xy^2\)
4.
\(\frac{-1}{5}x^4y^3+\frac{3}{4}x^2y-\frac{1}{2}x^2y+x^4y^3\)
\(=(\frac{-1}{5}x^4y^3+x^4y^3)+(\frac{3}{4}x^2y-\frac{1}{2}x^2y)\)
\(=\frac{4}{5}x^4y^3+\frac{1}{4}x^2y\)
5.
\(\frac{7}{4}x^5y^7-\frac{3}{2}x^2y^6+\frac{1}{5}x^5y^7+\frac{2}{3}x^2y^6\)
\(=(\frac{7}{4}x^5y^7+\frac{1}{5}x^5y^7)+(-\frac{3}{2}x^2y^6+\frac{2}{3}x^2y^6)\)
\(=\frac{39}{20}x^5y^7-\frac{5}{6}x^2y^6\)
6.
\(\frac{1}{3}x^2y^5(-\frac{3}{5}x^3y)+x^5y^6=(\frac{1}{3}.\frac{-3}{5})(x^2.x^3)(y^5.y)+x^5y^6\)
\(=\frac{-1}{5}x^5y^6+x^5y^6=\frac{4}{5}x^5y^6\)
1) \(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
3) \(ab\left(x^2+y^2\right)+xy\left(a^2+b^2\right)\)
\(=abx^2+aby^2+a^2xy+b^2xy\)
\(=ax\left(bx+ay\right)+by\left(ay+bx\right)\)
\(=\left(ay+bx\right)\left(ax+by\right)\)
1, \(\left(xy\right)^2-\frac{1}{2}x^2y^2+3xy^2.\left(-\frac{1}{3}x\right)\)
\(=x^2y^2-\frac{1}{2}x^2y^2-x^2y^2\)
\(=-\frac{1}{2}x^2y^2\)
2, \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)
\(=x^2+\frac{3}{2}x^2+\frac{1}{3}x^2\)
\(=\frac{17}{6}x^2\)
3, \(-4.\left(2x\right)^2y^3+\frac{1}{2}xy.\left(-2xy^2\right)+\frac{1}{4}x^2y^3\)
\(=-16x^2y^3-x^2y^3+\frac{1}{4}x^2y^3\)
\(=-\frac{67}{4}x^2y^3\)
4, \(\frac{1}{3}x^4y-\frac{5}{3}x^3.\left(\frac{5}{2}xy\right)+\frac{3}{4}x^4y\)
\(=\frac{1}{3}x^4y-\frac{25}{6}x^4y+\frac{3}{5}x^4y\)
\(=-\frac{97}{30}x^4y\)
5, \(\left(-2x^3y^4\right)^2-5x^2y.\left(\frac{3}{4}x^4y^7\right)-\frac{2}{3}x^6y^8\)
\(=4x^6y^8-\frac{15}{4}x^6y^8-\frac{2}{3}x^6y^8\)
\(=-\frac{5}{12}x^6y^8\)
a) A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 tại x = 5 và y = 4.Trước hết ta thu gọn đa thứcA = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 = x2 + 2xy + y3 Thay x = 5; y = 4 ta được:A = 52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.Vậy A = 129 tại x = 5 và y = 4.b) M = xy - x2y2 + x4y4 – x6y6 + x8y8 tại x = -1 và y = -1.Thay x = -1; y = -1 vào biểu thức ta được: M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8 = 1 -1 + 1 - 1+ 1 = 1. Tải xuống 0
a) Ta có : \(x^2+2xy-3x^3+2y^3+3x^3-y^3\)
\(=x^2+2xy+\left(-3x^3+3x^3\right)+\left(2y^3-y^3\right)\)
\(=x^2+2xy+y^3\)
Thay x = 5,y = 4 vào đa thức trên ta có : \(x^2+2xy+y^3=5^2+2\cdot5\cdot4+4^3=25+40+64=129\)
b) Thay \(x=-1,y=-1\) vào đa thức trên ta có :
(-1)(-1) - (-1)2(-1)2 + (-1)4(-1)4 - (-1)6(-1)6 + (-1)8(-1)8
= 1 - 1 + 1 - 1 + 1 =1
nhân phá ra.
VT=x5+x^4.y+x^3.y^2+x^2.y^4+x.y^4-x^4.y-x^3.y^2-x^2.y^3-x.y^4-y^5
=x^5-y^5=VP
=>dpcm