K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lí nhỏ Fermat vào biểu thức \(n^5-n\), ta được:

\(n^5-n⋮5\)(vì 5 là số nguyên tố)

Ta có: \(n^5-n\)

\(=n\left(n^4-1\right)\)

\(=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n^2+1\right)\)

Vì n-1 và n là hai số nguyên liên tiếp nên \(\left(n-1\right)\cdot n⋮2\)

\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\)

Vì n-1; n và n+1 là ba số nguyên liên tiếp nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮3\)

\(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\)(cmt)

và ƯCLN(2;3)=1

nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮2\cdot3\)

\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮6\)

\(\Leftrightarrow\left(n-1\right)\cdot n\cdot\left(n+1\right)\cdot\left(n^2+1\right)⋮6\)

hay \(n^5-n⋮6\)

\(n^5-n⋮5\)(cmt)

và ƯCLN(6;5)=1

nên \(n^5-n⋮6\cdot5\)

hay \(n^5-n⋮30\)(đpcm)

18 tháng 12 2017

a)Ta có: 
P = x^5 - x 
= x(x^4 - 1) 
= x(x^2 - 1)(x^2 + 1) 
= x(x-1)(x+1)(x^2 + 1) 

(x-1) và x và (x+1) là 3 số nguyên liên tiếp 
=> x(x-1)(x+1) chia hết cho 6 (cái này dễ hiểu vì trong 3 số nguyên liên tiếp luôn có 1 số chia hết cho 3, 1 số chia hết cho 2) 

Xét x = 5k => x chia hết cho 5 => P chia hết cho 6*5 = 30 => đpcm 
Xét x = 5k + 1 => (x-1) chia hết cho 5 => đpcm 
Xét x = 5k - 1 => (x+1) chia hết cho 5 => đpcm 
Xét x = 5k + 2 => (x^2 + 1) = (25k^2 + 20k + 5) chia hết cho 5 => đpcm 
Xét x = 5k - 2 => (x^2 + 1) = (25k^2 - 20k + 5) chia hết cho 5 => đpcm 

Tóm lại: với mọi x nguyên thì P đều chia hết cho 30

b)m4−10n2+9m4−10n2+9=(m-3)(m-1)(m+1)(m+3)
Ta có trong 4 số chẵn4 liên típ(m lẻ) lun có : 1 số chia hết cho 8,1 số chia hết cho 4, 2 số chia hết cho 2
\Rightarrow (m-3)(m-1)(m+1)(m+3) chia hết cho 128
.Nếu m= 3k \Rightarrow m-3 chia hết cho 3
.Nếu m= 3k+1 \Rightarrow m-1 chia hết cho 3
.Nếu m= 3k+2 \Rightarrow m+1 chia hết cho 3
Mà (3,128)=1 \Rightarrow ĐPCM

11 tháng 7 2018

a) Gọi 5 số tự nhiên đó là a; a+1; a+2; a+3;a+4

Tổng 5 số đó là a + a+1 + a+2 + a+3 + a+4

= (a+a+a+a+a) + (1+2+3+4)

= 5a + 10

= 5(a+2) chia hết cho 5

Vậy tổng của 5 số tự nhiên chia hết cho 5

6 tháng 8 2017

b) Giải:

Đặt \(A=n^3+3n^2-n-3\) ta có

\(A=n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n^2-1\right)\left(n+3\right)=\left(n+1\right)\left(n-1\right)\left(n+3\right)\)

Thay \(n=2k+1\left(k\in Z\right)\) ta được:

\(A=\left(2k+2\right)2k\left(2k+4\right)=\) \(2\left(k+1\right).2k.2\left(k+2\right)\)

\(=8\left(k+1\right)k\left(k+2\right)\)

\(\left(k+1\right)k\left(k+2\right)\) là tích của \(3\) số tự nhiên nhiên tiếp nên chia hết cho \(6\) \(\Rightarrow A⋮8.6=48\)

Vậy \(n^3+3n^2-n-3\) \(⋮48\forall x\in Z;x\) lẻ (Đpcm)

Cảm ơn bạn rất nhiều! thanghoa

22 tháng 2 2019

Câu 1 :            Giải

* Nếu n chia 5 dư 1 thì n2 chia 5 dư 1

\(\Rightarrow\left(n^2+4\right)⋮5\)

* Nếu n chia 5 dư 4 thì n2 chia 5 dư 4

\(\Rightarrow\left(n^2+1\right)⋮5\)

\(\Rightarrow\left(n^2+1\right)\left(n^2+4\right)⋮5\)

Từ đó suy ra \(n\left(n^2+1\right)\left(n^2+4\right)⋮5\)( đpcm )

Câu 2 :              Giải

Ta có : \(n^2+4n^2+5=5n^2+5=5\left(n^2+1\right)\)

\(\Rightarrow n^2+4n^2+5=\overline{...5}\)

\(\Rightarrow\)\(\Rightarrow n^2+4n^2+5\) không chia hết cho 8 ( đpcm )

17 tháng 2 2020

 \(A=5^n\left(5^n+1\right)-6^n\left(3^n+2^n\right)=25^n+5^n-18^n-12^n\)

Ta có: 25≡4 (mod 7) và 18≡4 (mod 7)

\(\Rightarrow25^n\text{≡}4^n\left(mod7\right)\)và \(18^n\text{≡}4\left(mod7\right)\)

\(\Rightarrow25^n-18^n⋮7\)(1)

Chứng minh tương tự, ta được \(5^n-12^n⋮7\)(2)

Từ (1) và (2) suy ra \(25^n+5^n-18^n-12^n⋮7\)

Tương tự như trên ta cũng chứng minh được \(25^n+5^n-18^n-12^n⋮13\)

Mà (7;13) = 1 nên \(25^n+5^n-18^n-12^n⋮91\)

Vậy A chia hết cho 91 với mọi n thuộc N (đpcm)