K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2023

theo đề bài ta có

`x+y=a`

`<=>(x+y)^2=a^2`

`<=>x^2+2xy+y^2=a^2`(1)

\(x^2+y^2\ge\dfrac{a^2}{2}\)

\(< =>\)\(2x^2+2y^2\ge a^2\)

thay (1) ta có

\(=>2x^2+2y^2\ge x^2+2xy+y^2\)

\(< =>2x^2+2y^2-x^2-2xy-y^2\ge0\)

\(< =>x^2-2xy+y^2\ge0\)

`<=>(x-y)^2>=0` (đúng)

dấu ''='' xảy ra khí `x=y`

Giả sử x/a=y/b=z/c=k

=>x=ak; y=bk; z=ck

\(\left(ax+by+cz\right)^2\)

\(=\left(a^2k+b^2k+c^2k\right)^2\)

\(=k^2\cdot\left(a^2+b^2+c^2\right)^2\)

\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)

\(=\left(a^2+b^2+c^2\right)\left(k^2a^2+k^2b^2+k^2c^2\right)\)

\(=k^2\left(a^2+b^2+c^2\right)^2\)

Do đó: \(\left(ax+by+cz\right)^2=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)

Giả sử như x/2=y/5=-z/2

Đặt x/2=y/5=z/-2=k

=>x=2k; y=5k; z=-2k

\(\left(2x+5y-2z\right)^2=\left(4k+25k+4k\right)^2=\left(41k\right)^2\)

\(33\left(x^2+y^2+z^2\right)=33\left(4k^2+25k^2-4k^2\right)\)

\(=33\cdot25k^2< >\left(41k\right)^2\)

=>Đề sai rồi bạn

2 tháng 12 2016

vay la sao

2 tháng 12 2016

thì là các bạn chứng minh sao cho vế trái >= vế phải

30 tháng 3 2018

1) 2( a2 + b2 ) ≥ ( a + b)2

<=> 2a2 + 2b2 - a2 - 2ab - b2 ≥ 0

<=> a2 - 2ab + b2 ≥ 0

<=> ( a - b )2 ≥ 0 ( luôn đúng )

=> đpcm

2) Áp dụng BĐT Cô-si cho 2 số dương x , y , ta có :

a + b ≥ \(2\sqrt{ab}\)

=> \(\dfrac{1}{x}+\dfrac{1}{y}\) ≥ 2\(\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}\)

=> ( x + y)( \(\dfrac{1}{x}+\dfrac{1}{y}\) ) ≥ \(2\sqrt{xy}\)2\(\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}\)

=> ( x + y)( \(\dfrac{1}{x}+\dfrac{1}{y}\)) ≥ 4

=> \(\dfrac{1}{x}+\dfrac{1}{y}\)\(\dfrac{4}{x+y}\)

19 tháng 6 2017

Ta có:(a2+b2+c2)(x2+y2+z2)=(ax+by+cz)2

=>a2x2+a2y2+a2z2+b2x2+b2y2+b2z2+c2x2+

c2y2+c2z2=a2x2+b2y2+c2z2+2axby+2axcz+

2bycz

=>a2y2+a2z2+b2x2+b2z2+c2x2+c2y2-2axby-2axcz-2bycz=0

=>(a2y2-2axby+b2x2)+(a2z2-2axcz+c2x2)+

(b2z2-2bycz+c2y2)=0

=>(ay-bx)2+(az-cx)2+(bz-cy)2=0

Vì (ay-bx)2\(\ge0\);(az-cx)2\(\ge0\);(bz-cy)2\(\ge0\)

nên =>(ay-bx)2+(az-cx)2+(bz-cy)2\(\ge0\)

Dấu "=" xảy ra khi:\(\left\{{}\begin{matrix}ay-bx=0\\az-cx=0\\bz-cy=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}ay=bx\\az=cx\\bz=cy\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}\dfrac{a}{x}=\dfrac{b}{y}\\\dfrac{a}{x}=\dfrac{c}{z}\\\dfrac{b}{y}=\dfrac{c}{z}\end{matrix}\right.\)=>\(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)(x;y;z\(\ne0\))

17 tháng 9 2017

cái chỗ dấu = xảy ra khi... cậu viết rõ hơn đc k? tớ ms vào nên k biết kí hiệu này lắm

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

a)

\(a^2+b^2+c^2+d^2+m^2-a(b+c+d+m)\)

\(=\frac{4a^2+4b^2+4c^2+4d^2+4m^2-4a(b+c+d+m)}{4}\)

\(=\frac{(a^2+4b^2-4ab)+(a^2+4c^2-4ac)+(a^2+4d^2-4ad)+(a^2+4m^2-4am)}{4}\)

\(=\frac{(a-2b)^2+(a-2c)^2+(a-2d)^2+(a-2m)^2}{4}\geq 0\) (đpcm)

Dấu "=" xảy ra khi \(a=2b=2c=2d=2m\)

b)

Xét hiệu

\(\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}=\frac{x+y}{xy}-\frac{4}{x+y}=\frac{(x+y)^2-4xy}{xy(x+y)}\)

\(=\frac{x^2+y^2-2xy}{xy(x+y)}=\frac{(x-y)^2}{xy(x+y)}\geq 0, \forall x,y>0\)

\(\Rightarrow \frac{1}{x}+\frac{1}{y}\geq \frac{4}{x+y}\) (đpcm)

Dấu "=" xảy ra khi $x=y$

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

c)

Xét hiệu:

\((a^2+c^2)(b^2+d^2)-(ab+cd)^2\)

\(=(a^2b^2+a^2d^2+c^2b^2+c^2d^2)-(a^2b^2+2abcd+c^2d^2)\)

\(=a^2d^2-2abcd+b^2c^2=(ad-bc)^2\geq 0\)

\(\Rightarrow (a^2+c^2)(b^2+d^2)\geq (ab+cd)^2\) (đpcm)

Dấu "=" xảy ra khi \(ad=bc\)

d)

Xét hiệu:

\(a^2+b^2-(a+b-\frac{1}{2})=a^2+b^2-a-b+\frac{1}{2}\)

\(=(a^2-a+\frac{1}{4})+(b^2-b+\frac{1}{4})\)

\(=(a-\frac{1}{2})^2+(b-\frac{1}{2})^2\geq 0\)

\(\Rightarrow a^2+b^2\geq a+b-\frac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

13 tháng 2 2018

theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)

A=\(\dfrac{x-y}{x+y}\)

=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)

=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)

vì y>x>0=> A=-1/2

AH
Akai Haruma
Giáo viên
29 tháng 11 2017

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{x^4}{a}+\frac{y^4}{b}\right)(a+b)\geq (x^2+y^2)^2=1\)

\(\Leftrightarrow \frac{x^4}{a}+\frac{y^4}{b}\geq \frac{1}{a+b}\)

Dấu bằng xảy ra khi \(\frac{x^2}{a}=\frac{y^2}{b}\). Do đó \(\frac{x^2}{a}=\frac{y^2}{b}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)

\(\Rightarrow \frac{x^{2006}}{a^{1003}}=\frac{y^{2006}}{b^{1003}}=\frac{1}{(a+b)^{1003}}\)

\(\Rightarrow \frac{x^{2006}}{a^{1003}}+\frac{y^{2006}}{y^{1003}}=\frac{2}{(a+b)^{1003}}\)

Do đó ta có đpcm.

30 tháng 11 2017

Bài này phải quy đồng rồi áp dụng chớ chớ lỡ a+b=0 thì sao chị :3

29 tháng 8 2019

\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(\Leftrightarrow a^2x^2+b^2x^2+a^2y^2+b^2y^2=a^2x^2+2axby+b^2y^2\)

\(\Leftrightarrow a^2x^2+b^2x^2+a^2y^2+b^2y^2-a^2x^2-2axby-b^2y^2=0\)

\(\Leftrightarrow a^2y^2-2axby+b^2x^2=0\)

\(\Leftrightarrow a^2b^2-axby-axby+b^2x^2=0\)

\(\Leftrightarrow ay\left(ay-bx\right)-bx\left(ay-bx\right)=0\)

\(\Leftrightarrow\left(ay-bx\right)\left(ay-bx\right)=0\)

\(\Leftrightarrow\left(ay-bx\right)^2=0\)

\(\Leftrightarrow ay-bx=0\)

\(\Leftrightarrow ay=bx\)

\(\Leftrightarrow\frac{a}{x}=\frac{b}{y}\)

15 tháng 12 2016

one piece

18 tháng 12 2016

Em mong cac ban giup cau 2 thoi cung duoc a