K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2016

a) Nhân cả hai vế với b, ta có đpcm

b) Đề sai

c) Nhân cả hai vế với b, ta có đpcm

d) Bạn trên đã làm r , mình  k trình bày lại nữa

8 tháng 8 2016

d,

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow\) \(a=k\times b\) ; \(c=k\times d\)

Ta có :

\(\frac{a^2}{b^2}=\frac{\left(k\times b\right)^2}{b^2}=\frac{k^2\times b^2}{b^2}=k^2\)                           (1)

\(\frac{c^2}{d^2}=\frac{\left(k\times d\right)^2}{d^2}=\frac{k^2\times d^2}{d^2}=k^2\)                            (2)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(k\times b\right)^2+\left(k\times d\right)^2}{b^2+d^2}=\frac{k^2\times b^2+k^2\times d^2}{b^2+d^2}=\frac{k^2\times\left(b^2+d^2\right)}{b^2+d^2}=k^2\)              (3)

Từ (1) ; (2) và (3) => \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

15 tháng 6 2017

1

a,Ta có: \(\frac{a^2+b^2}{a^2+c^2}=\frac{bc+b^2}{bc+c^2}=\frac{b\left(c+b\right)}{c\left(c+b\right)}=\frac{b}{c}\)

b, \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+a\right)+\left(c-a\right)}=\frac{2a}{2c}=\frac{a}{c}\)(1)

Mặt khác: \(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+a\right)-\left(c-a\right)}=\frac{2b}{2a}=\frac{b}{a}\)(2)

Từ (1);(2)\(\Rightarrow\frac{a}{c}=\frac{b}{a}\Leftrightarrow a^2=bc\)

c, Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{a}{b}=\frac{c}{d}=\frac{m}{n}=\frac{a+c+m}{b+d+n}\)

15 tháng 6 2017

Ta có : \(a^2=bc\)

\(\Rightarrow\frac{a^2+b^2}{a^2+c^2}=\frac{bc+b^2}{bc+c^2}=\frac{b\left(b+c\right)}{c\left(b+c\right)}=\frac{b}{c}\)(đpcm)

3 tháng 5 2018

Đặt \(\frac{a}{b}< \frac{c}{d}=k\Rightarrow a< bk;c=dk\Rightarrow a+c< bk+dk=\left(b+d\right)k\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{\left(b+d\right)k}{b+d}=k\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)

22 tháng 10 2018

Ta có : \(\frac{a}{b}>\frac{a+c}{b+d}\)

<=> \(a\left(b+d\right)>b\left(a+c\right)\)

<=> \(ab+ad>bc+ba\)

<=> \(ad>bc\)[ Đoạn này ta thấy ba bên vế trái và vế phải giống nhau nên rút gọn bớt đi ]

<=> \(a>b\)

=> \(\frac{a}{b}>\frac{a+c}{b+d}\)

8 tháng 7 2019

Cho \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}\Rightarrow\hept{\begin{cases}a^2=b^2k^2\\c^2=d^2k^2\end{cases}}}\)

Ta có: \(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\)

Lại có: \(\frac{a.b}{c.d}=\frac{bk.b}{dk.d}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\)

Vậy \(\frac{a^2+b^2}{c^2+d^2}=\frac{a.b}{c.d}\left(ĐPCM\right)\)

8 tháng 7 2019

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

<=> a2cd + b2cd = abc2 + abd2

<=> a2cd - abd2 = abc2 - b2cd

<=> ad(ac - bd)  = bc(ac - bd) 

<=> ad = bc

<=> \(\frac{a}{b}=\frac{c}{d}\)

17 tháng 5 2018

ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{a}{b}=\frac{c}{d}.\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}\)

                           \(\Rightarrow\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{ac}{bd}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\)

ADTCDTSBN

có: \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

\(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(=\frac{a^2}{b^2}=\frac{c^2}{d^2}\right)\) ( đ p c m)

9 tháng 2 2016

Từ; \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áps dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a+b}{c+d}\right)^2\)(1)

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)(2)

Từ (1) và (2) =>\(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

9 tháng 2 2016

vì a/b = c/d suy ra a + b/c+d = a/b = c/d suy ra a^2 / b^2 = c^2 / d^2 = (a+b/ c+d) ^2

áp dụng tính chất dãy tỉ số bằng nhau ta có :

 a^2 / b^2 = c^2 / d^2 = ( a+b/c+d)^2 = a^2 + b^2 / c^2+ d^2 ( đpcm)

17 tháng 12 2019

Ta có : \(\frac{a}{b}=\frac{b}{c}\)
\(\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{b}{c}\right)^2=\frac{ab}{bc}\)(Áp dụng tính chất a = b => a2 = b2 = ab)
\(\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{ab}{bc}\)
\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)(Trừ khử b trên tử và dưới mẫu còn a/c)