Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử không có BĐT thức nào có nghiệm. Khi đó:
\(\Delta_1=\left(2b\right)^2-4ac=4b^2-4ac< 0\Leftrightarrow b^2< ac\left(1\right)\)
\(\Delta_2=\left(2c\right)^2-4ab=4c^2-4ab< 0\Leftrightarrow c^2< ab\left(2\right)\)
\(\Delta_3=\left(2a\right)^2-4bc=4a^2-4bc< 0\Leftrightarrow a^2< bc\left(3\right)\)
Từ (1), (2), (3) suy ra b2 . c2 . a2 < ac . ab . bc (Vì các vế của chúng đều phải dương)
\(\Leftrightarrow\left(abc\right)^2< \left(abc\right)^2\), vô lí
Do đó giả thiết sai. Vậy ít nhất một trong 3 BĐT có nghiệm
Lời giải:
a)
Để pt có nghiệm thì $\Delta'=4+m\geq 0\Leftrightarrow m\geq -4(1)$
Để nghiệm $x_1,x_2< 3$ thì:
\(\left\{\begin{matrix} (x_1-3)(x_2-3)> 0\\ x_1+x_2< 6\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} x_1x_2-3(x_1+x_2)+9>0\\ x_1+x_2< 6\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -m-3.4+9>0\\ 4< 6\end{matrix}\right.\Leftrightarrow m< -3\)
Do đó để tồn tại nghiệm $x\geq 3$ thì $m\geq -3(2)$
Từ $(1);(2)\Rightarrow m\geq -3$
b) Làm tương tự phần a.
Mình chưa học cách chứng minh mệnh đề nhưng mk chứng minh được hệ thức Vi-et:
\(ax^2+bx+c=0\)
\(\Delta=b^2-4ac\)
để phương trình có 2 nghiệm thì \(\Delta\ge0\)
\(\Rightarrow b^2-4ac\ge0\)
phương trình có 2 nghiệm là
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}\)
Ta có
\(x_1+x_2=\frac{-b+\sqrt{\Delta}}{2a}+\frac{-b-\sqrt{\Delta}}{2a}\)
\(=\frac{-2b}{2a}=-\frac{b}{a}\)
\(x_1.x_2=\frac{-b+\sqrt{\Delta}}{2a}.\frac{-b-\sqrt{\Delta}}{2a}\)
\(=\frac{\left(-b+\sqrt{\Delta}\right).\left(-b-\sqrt{\Delta}\right)}{2a.2a}\)
\(=\frac{b^2-\Delta}{4a^2}\)
\(=\frac{b^2-\left(b^2-4ac\right)}{4a^2}\)
\(=\frac{4ac}{4a^2}=\frac{c}{a}\)
*Th1: Xét a;b < 0 thì \(a\le-2;b\le-2\)
khi đó VF âm và VT luôn dương nên BĐT luôn xảy ra.
*Th2: Xét a;b > 0 thì \(a\ge2;b\ge2\).
\(BDT\Leftrightarrow2a^2b^2+2a^2+2b^2+2\ge2\left(ab+1\right)\left(a+b\right)+10\)
\(\Leftrightarrow\left[\left(a+b\right)^2+a^2b^2-2ab\left(a+b\right)\right]+\left(a^2b^2-8ab+16\right)+\left(a^2+b^2-2ab\right)+8ab-2a-2b-24\ge0\)
\(\Leftrightarrow\left(a+b-ab\right)^2+\left(ab-4\right)^2+\left(a-b\right)^2+\left(a-2\right)\left(b-2\right)+7\left(ab-4\right)\ge0\)
( đúng)
Vậy BĐT được chứng minh.
Mệnh đề đảo là : "Nếu \(f\left(x\right)\) có một nghiệm bằng 1 thì \(a+b+c=0\)". "Điều kiện cần và đủ để \(f\left(x\right)=ax^2+bx+c\) có một nghiệm bằng 1 là \(a+b+c=0\)"
Xét \(a=0\Rightarrow|b|\ge2\)Khi đó phương trình chắc chắn có nghiệm \(x=\frac{1}{b}\)
Xét: \(a\ne0,\) \(\Delta=b^2-2.2a\left(1-a\right)=4a^2-4a+b^2\)
\(|a|+|b|\ge2\Leftrightarrow|b|\ge2-|a|\Rightarrow b^2\ge a^2-4|a|+4\)
\(\Rightarrow\Delta\ge5a^2-4a-4|a|+4\)
Xét: \(a\le0\Rightarrow|a|=-a\Rightarrow\Delta=5a^2-4a-4|a|+4=5a^2+4>0\)---> phương trình luôn có nghiệm.
\(a\ge0\Rightarrow|a|=a\Rightarrow\Delta=5a^2-8a+4=5\left(x-\frac{4}{5}\right)^2+\frac{4}{5}>0\)---> phương trình luôn có nghiệm.