Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)
Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)
Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)
Bài 2: Thêm đk a,b,c >0.
Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.
Bài 3: Nó sao sao ấy ta?
Đề phải là \(a;b;c>0\) lần sau chú ý mà gõ -_-
Ta có : \(\frac{a^3}{b+c}+\frac{a\left(b+c\right)}{4}\ge2\sqrt{\frac{a^3}{b+c}.\frac{a\left(b+c\right)}{4}}=a^2\)(BĐT Cosi)
Tương tự \(\hept{\begin{cases}\frac{b^3}{a+c}+\frac{b\left(a+c\right)}{4}\ge b^2\\\frac{c^3}{a+b}+\frac{c\left(a+b\right)}{4}\ge c^2\end{cases}}\)
Cộng vế với vế của các BĐT vừa chứng minh lại ta được :
\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}+\frac{ab+ac+bc}{2}\ge a^2+b^2+c^2\)
\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge a^2+b^2+c^2-\frac{ab+ac+bc}{2}\)
\(\ge a^2+b^2+c^2-\frac{a^2+b^2+c^2}{2}=\frac{a^2+b^2+c^2}{2}=\frac{1}{2}\) (Do \(a^2+b^2+c^2\ge ab+ac+bc\))
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)
Giả sử: \(a\ge b\ge c\Rightarrow\hept{\begin{cases}a^2\ge b^2\ge c^2\\\frac{a}{b+c}\ge\frac{b}{a+c}\ge\frac{c}{a+b}\end{cases}}\)
Áp dụng BĐT Chebyshev ta có:
\(a^2.\frac{a}{b+c}+b^2.\frac{b}{a+c}+c^2.\frac{c}{a+b}\)\(\ge\frac{a^2+b^2+c^2}{3}\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{b+c}\right)\)\(=\frac{1}{3}.\frac{3}{2}=\frac{1}{2}\)
Vậy \(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\) Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)
áp dụng BĐT : \(x^3+y^3\ge xy\left(x+y\right)\) ta có:
\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\frac{a^3}{b}+b^2\ge a\left(a+b\right)\) (vì b>0)
\(\Leftrightarrow\frac{a^3}{b}+b^2\ge a^2+ab\) (1)
c/m tương tự ta đc: \(\frac{b^3}{c}+c^2\ge b^2+bc\) (2)
\(\frac{c^3}{a}+a^2\ge c^2+ca\) (3)
Từ (1),(2),(3)=> \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\) =>đpcm
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)
\(BDT\Leftrightarrow\left(a+b+c\right)\left(\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(a+c\right)^2}+\frac{c}{\left(a+b\right)^2}\right)\ge\frac{9}{4}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(a+b+c\right)\left(\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(a+c\right)^2}+\frac{c}{\left(a+b\right)^2}\right)\ge\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2\)
Theo BĐT Nesbitt thì : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
\(\Rightarrow\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2\ge\frac{9}{4}\)
Không mất tính tổng quát, chuẩn hóa a + b + c = 3 \(\Rightarrow0< a,b,c< 3\)
Khi đó bất đẳng thức tương đương với: \(\frac{a}{\left(3-a\right)^2}+\frac{b}{\left(3-b\right)^2}+\frac{c}{\left(3-c\right)^2}\ge\frac{3}{4}\)
Xét BĐT phụ: \(\frac{x}{\left(3-x\right)^2}\ge\frac{2x-1}{4}\)với \(x\in\left(0;3\right)\)
Thật vậy: (*)\(\Leftrightarrow\frac{\left(x-1\right)^2\left(-2x+9\right)}{4\left(3-x\right)^2}\ge0\)(đúng với mọi \(x\in\left(0;3\right)\))
Áp dụng, ta được: \(\frac{a}{\left(3-a\right)^2}+\frac{b}{\left(3-b\right)^2}+\frac{c}{\left(3-c\right)^2}\ge\frac{2a-1}{4}+\frac{2b-1}{4}+\frac{2c-1}{4}\)
\(=\frac{2\left(a+b+c\right)-3}{4}=\frac{3}{4}\left(q.e.d\right)\)
Đẳng thức xảy ra khi a = b = c
a)Bạn đặt A = a/ (1 + a^2). => A + a^2A = a => a^2A - a + A = 0. ta có delta = 1 - 4A^2 ( gọi ẩn số là a). => để pt có nghiệm <=> 1 - 4A^2 >= 0 => để phương trình có nghiệm => 1 - 4A^2 >= 0 => 1 >= 4A^2 => A =< 1/2. => max A = 1/2. bạn giải tương tự B = b/(1+b^2), C = c/(1 + c^2) rồi cộng vào nhau là ra ngay thôi. Đây là cách giải bằng delta.
b)bạn có (a^2 - b^2)/c = ((a+b)(a-b))/c >= (c + c)(a-b)/c = 2(a - b). Bạn có c =< b ( theo đề bài) = > c + b =< 2b => (c + b) =<2b => (c + b)/b <= 2 => (c + b)/a <= 2. từ đó ta có (c^2 - b^2)/a = (c -b )(c + b)/a >= 2(c - b).
chứng minh tương tự:(a + c)/b > 1 => (a^2 - c^2)/b >= a - c.( sr ngại gõ lắm) => cộng 3 vế ta được đpcm
a/ BĐT sai, cho \(a=b=c=2\) là thấy
b/ \(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)
\(VT\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{3\left(a+b+c\right)^2}=\frac{1}{3}\left(a^2+b^2+c^2\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
c/ Tiếp tục sai nữa, vế phải là \(\frac{3}{2}\) chứ ko phải \(2\), và hy vọng rằng a;b;c dương
\(VT=\frac{a^2}{abc.b+a}+\frac{b^2}{abc.c+b}+\frac{c^2}{abc.a+c}\ge\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+a+b+c}\)
\(VT\ge\frac{9}{3abc+3}\ge\frac{9}{\frac{3\left(a+b+c\right)^3}{27}+3}=\frac{9}{\frac{3.3^3}{27}+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có:
\(a^3+b^3+b^3\ge3ab^2\) ; \(b^3+c^3+c^3\ge3bc^2\) ; \(c^3+a^3+a^3\ge3ca^2\)
Cộng vế với vế \(\Rightarrow a^3+b^3+c^3\ge ab^2+bc^2+ca^2\)
\(\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}=\frac{a^6}{ab^2}+\frac{b^6}{bc^2}+\frac{c^6}{ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab^2+bc^2+ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)
Câu hỏi của Namek kian - Toán lớp 9 - Học toán với OnlineMath
em tham khảo ở link này nhé!
Áp dụng BĐT Svac
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{a+b+c}{2a+2b+2c}=\frac{1}{2}\)
Vậy đề sai nhé
Đặt b + c = x ; c + a = y ; a + b = z
=> a = (y + z - x) / 2 ; b = (x + z - y) / 2 ; c = (x + y - z) / 2
=> P = a/b+c + b/c+a + c/a+b = (y + z - x) / 2x + (x + z - y) / 2y + (x + y - z) / 2z
= 1/2. (y/x + z/x - 1 + x/y + z/y - 1 + x/z + y/z - 1) = 1/2. (x/y + y/x + x/z + z/x + y/z + z/y - 3)
Áp dụng BĐT A/B + B/A ≥ 0 hoặc Cô-si cũng được
=> P ≥ 1/2. (2 + 2 + 2 - 3) = 3/2 (đpcm)
Dấu = xảy ra <=> x = y = z <=> b+c = c+a = a+b <=> a = b = c
P = a/(b+c) + b/(c+a) + c/(a+b)
P + 3 = 1+ a/(b+c) + 1+ b/(c+a) + 1+ c/(a+b)
P + 3 = (a+b+c)/(b+c) + (a+b+c)/(b+c) + (a+b+c)/(c+a)
P + 3 = (a+b+c)[1/(b+c) + 1/(c+a) + 1/(a+b)] (*)
ad bđt cô si cho 3 số:
2(a+b+c) = (a+b) + (b+c) + (c+a) ≥ 3.³√(a+b)(b+c)(c+a)
1/(b+c) + 1/(c+a) + 1/(a+b) ≥ 3.³√1/(a+b)(b+c)(c+a)
nhân lại vế theo vế 2 bđt: 2(a+b+c)[1/(b+c) + 1/(c+a) + 1/(a+b)] ≥ 9
=> P + 3 ≥ 9/2 => P ≥ 3/2 (đpcm) ; dấu "=" khi a = b = c
- - -
cách khác: P = a/(b+c) + b/(c+a) + c/(a+b)
M = b/(b+c) + c/(c+a) + a/(a+b)
N = c/(b+c) + a/(c+a) + b/(a+b)
Thấy: M + N = 3
P + M = (a+b)/(b+c) + (b+c)/(c+a) + (c+a)/(a+b) ≥ 3 (cô si cho 3 số)
P + N = (a+c)/(b+c) + (b+a)/(c+a) + (c+b)/(a+b) ≥ 3 (cô si)
=> 2P + M + N ≥ 6 => 2P + 3 ≥ 6 => P ≥ 3/2 (đpcm) ; đẳng thức khi a = b = c
--------------
b) ad bđt Bunhia: 1² = [2.(2x) + 1.y]² ≤ (2²+1²)(4x²+y²) => 4x² + y² ≥ 1/5 (đpcm)
dấu "=" khi 2x/2 = y/1 và 4x+y = 1 <=> x = y = 1/5
- - -
Có thể không cần Bunhia, ad bđt a² + b² ≥ 2ab (*)
(*) quá hiển nhiên từ (a-b)² ≥ 0
x² + 1/25 ≥ 2x/5 <=> 4x² ≥ 8x/5 - 4/25 (1*)
y² + 1/25 ≥ 2y/5 <=> y² ≥ 2y/5 - 1/25 (2*)
lấy (1*)+(2*) => 4x²+y² ≥ 8x/5+2y/5 - 4/25 - 1/25 = 2(4x+y)/5 - 5/25 = 1/5 (đpcm)
dấu "=" khi x = y = 1/5