K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2016

1) Ta sẽ chứng minh bằng biến đổi tương đương như sau : 

Ta có : \(\left(x^{10}+y^{10}\right)\left(x^2+y^2\right)\ge\left(x^8+y^8\right)\left(x^4+y^4\right)\left(1\right)\)

\(\Leftrightarrow x^{12}+x^{10}y^2+y^{10}x^2+y^{12}\ge x^{12}+x^8y^4+y^8x^4+y^{12}\)

\(\Leftrightarrow x^{10}y^2+y^{10}x^2\ge x^8y^4+y^8x^4\)

\(\Leftrightarrow x^2y^2\left(x^8+y^8-x^6y^2-x^2y^6\right)\ge0\)

\(\Leftrightarrow x^2y^2\left[\left(x^8-x^6y^2\right)+\left(y^8-x^2y^6\right)\right]\ge0\)

\(\Leftrightarrow x^2y^2\left(x^6-y^6\right)\left(x^2-y^2\right)\ge0\)

\(\Leftrightarrow x^2y^2\left(x^3-y^3\right)\left(x^3+y^3\right)\left(x^2-y^2\right)\ge0\)

\(\Leftrightarrow x^2y^2\left(x-y\right)^2\left(x+y\right)^2\left(x^2-xy+y^2\right)\left(x^2+xy+y^2\right)\ge0\)(2)

Ta thấy : \(x^2-xy+y^2=\frac{\left(x^2-2xy+y^2\right)+x^2+y^2}{2}=\frac{\left(x-y\right)^2+x^2+y^2}{2}\ge0\)

\(x^2+xy+y^2=\frac{\left(x+y\right)^2+x^2+y^2}{2}\ge0\)  ; \(x^2y^2\left(x-y\right)^2\left(x+y\right)^2\ge0\)

Do đó (2) luôn đúng.

Vậy (1) được chứng minh. 

15 tháng 7 2016

thank nha ngọc

 

4 tháng 8 2020

2) Ta có: Áp dụng bất đẳng thức:

\(xy\le\frac{\left(x+y\right)^2}{4}\) ta được:

\(\left(a+b-c\right)\left(b+c-a\right)\le\frac{\left(a+b-c+b+c-a\right)^2}{4}=\frac{4b^2}{4}=b^2\)

Tương tự chứng minh được:

\(\left(b+c-a\right)\left(a+c-b\right)\le c^2\)

\(\left(a+b-c\right)\left(a+c-b\right)\le a^2\)

Nhân vế 3 bất đẳng thức trên với nhau ta được:

\(\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\le\left(abc\right)^2\)

\(\Rightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)

Dấu "=" xảy ra khi: \(a=b=c\)

19 tháng 3 2019

toán 8,9 khó chả ai trả lời cả khổ lắm!!!!!!

19 tháng 3 2019

Vì a,b,c là độ dài 3 cạnh tam giác nên

\(\hept{\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}}\)

Ta có : \(\left(p-a\right)\left(p-b\right)\left(p-c\right)=\left(\frac{a+b+c}{2}-a\right)\left(\frac{a+b+c}{2}-b\right)\left(\frac{a+b+c}{2}-c\right)\)

         \(=\frac{b+c-a}{2}.\frac{a+c-b}{2}.\frac{a+b-c}{2}=\frac{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}{8}\)

         \(=\frac{\sqrt{\left(a+b-c\right)\left(b+c-a\right)}.\sqrt{\left(b+c-a\right)\left(c+a-b\right)}.\sqrt{\left(a+b-c\right)\left(c+a-b\right)}}{8}\)

          \(\le\frac{\frac{a+b-c+b+c-a}{2}.\frac{b+c-a+c+a-b}{2}.\frac{a+b-c+c+a-b}{2}}{8}\)

           \(=\frac{\frac{2b}{2}.\frac{2c}{2}.\frac{2a}{2}}{8}=\frac{abc}{8}\)

Dấu "=" <=> tam giác đó đều

2:

ĐKXĐ: x≠-1

Ta có: \(x\left(\frac{5-x}{x+1}\right)\left(x+\frac{5-x}{x+1}\right)=6\)

\(\Leftrightarrow\frac{5x-x^2}{x+1}\cdot x+\frac{5-x}{x+1}\cdot\frac{5x-x^2}{x+1}-6=0\)

\(\Leftrightarrow\frac{5x^2-x^3}{x+1}+\frac{x^3-10x^2+25x}{\left(x+1\right)^2}-\frac{6\left(x+1\right)^2}{\left(x+1\right)^2}=0\)

\(\Leftrightarrow\frac{\left(5x^2-x^3\right)\left(x+1\right)}{\left(x+1\right)^2}+\frac{x^3-10x^2+25x}{\left(x+1\right)^2}-\frac{6\left(x^2+2x+1\right)}{\left(x+1\right)^2}=0\)

Suy ra: \(-x^4+4x^3+5x^2+x^3-10x^2+25x-6x^2-12x-6=0\)

\(\Leftrightarrow-x^4+5x^3-11x^2+13x-6=0\)

\(\Leftrightarrow-x^4+x^3+4x^3-4x^2-7x^2+7x+6x-6=0\)

\(\Leftrightarrow-x^3\left(x-1\right)+4x^2\left(x-1\right)-7x\left(x-1\right)+6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-x^3+4x^2-7x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-x^3+2x^2+2x^2-4x-3x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[-x^2\left(x-2\right)+2x\left(x-2\right)-3\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(-x^2+2x-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x^2-2x+3\right)=0\)

\(x^2-2x+3=\left(x-1\right)^2+2>0\forall x\)

nên \(\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)

Vậy: S={1;2}

NV
5 tháng 7 2020

a/ Đề bài sai, ví dụ tam giác điển hình \(a=3;b=4;c=5\)

\(\Rightarrow\left(3+4+5\right)^2\le9.3.4\Rightarrow144\le108\) (vô lý)

b/ Bạn tham khảo:

Câu hỏi của Vo Thi Minh Dao - Toán lớp 9 | Học trực tuyến

AH
Akai Haruma
Giáo viên
16 tháng 8 2017

Lời giải:

Vế đầu tiên:

Áp dụng BĐT AM-GM:

\(a^2+b^2\geq 2ab\Rightarrow 2(a^2+b^2)\geq (a+b)^2\Leftrightarrow a^2+b^2\geq \frac{(a+b)^2}{2}\)

Do đó, \(\sqrt{a^2+b^2}\geq \frac{a+b}{\sqrt{2}}\). Tương tự với các biểu thức còn lại và cộng theo vế:

\(\Rightarrow S\geq \sqrt{2}(a+b+c)\) (đpcm)

Dấu bằng xảy ra khi $a=b=c$

Vế sau:

Áp dụng BĐT Cauchy-Schwarz:

\(S^2\leq (1+1+1)(a^2+b^2+b^2+c^2+c^2+a^2)\)

\(\Leftrightarrow S^2\leq 6(a^2+b^2+c^2)\Leftrightarrow S\leq \sqrt{6(a^2+b^2+c^2)}\) \((1)\)

Ta sẽ cm \(\sqrt{6(a^2+b^2+c^2)}< \sqrt{3}(a+b+c)\)

\(\Leftrightarrow 2(a^2+b^2+c^2)\leq (a+b+c)^2\Leftrightarrow a^2+b^2+c^2\leq 2(ab+bc+ac)\)

\(\Leftrightarrow a(b+c-a)+b(c+a-b)+c(a+b-c)\geq 0\) (luôn đúng vì $a,b,c$ là độ dài ba cạnh tam giác)

Do đó \(\sqrt{6(a^2+b^2+c^2)}<\sqrt{3}(a+b+c)(2)\)

Từ \((1),(2)\Rightarrow S<\sqrt{3}(a+b+c)\)

Vậy ta có đpcm.