Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt bunhiacopxki:
\(\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)\ge\left(x.1+y.1+z.1\right)^2=\left(x+y+z\right)^2=1\)
\(\Rightarrow x^2+y^2+z^2\ge\frac{1}{1^2+1^2+1^2}=\frac{1}{3}\)
Dấu "=" xảy ra \(< =>\frac{x}{1}=\frac{y}{1}=\frac{z}{1}mà.x+y+z=1< =>x=y=z=\frac{1}{2}\)
1/x-1/y-1/z = 1
<=>(1/x-1/y-1/z)^2 = 1
<=> 1/x^2+1/y^2+1/z^2+2.(-1/xy+1/yz-1/zx) = 1
<=> 1/x^2+1/y^2+1/z^2 = 1-2.(-z+x-y/xyz) = 1-2.(x-y-z/xyz) = 1-2.0 = 1
=> ĐPCM
k mk nha
2. Phân tích vế trái ta được:
\(2.\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]\)
Phân tích vế phải ta được:
\(6.\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]\)
Vì \(VT=VP\) nên \(VP-VT=0.\)
\(\Rightarrow4.\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]=0\)
\(\Rightarrow2.\left\{2.\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]\right\}=0\)
\(\Rightarrow2.\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)
\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{matrix}\right.\)
\(\Rightarrow x=y=z\) ( đpcm )