K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2018

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)

\(\Rightarrow\left(x+y+z\right)\left(xy+yz+zx\right)=xyz\)

\(\Leftrightarrow x^2y+xyz+zx^2+xy^2+y^2z+xyz+xyz+yz^2+z^2x-xyz=0\)

\(\Leftrightarrow x^2y+x^2z+y^2x+y^2z+z^2x+z^2y+2xyz=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

6 tháng 10 2019

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{x+y+z}-\frac{1}{z}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{-x-y}{\left(x+y+z\right)z}\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{\left(x+y+z\right)z}\right)=0\)

\(+,x+y=0\Rightarrow x=-y\Rightarrow\text{đpcm}\)

\(+,\frac{1}{xy}+\frac{1}{\left(x+y+z\right)z}=0\Leftrightarrow\frac{xy+xz+yz+z^2}{xyz\left(x+y+z\right)}=0\Leftrightarrow\frac{x\left(y+z\right)+z\left(z+y\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\frac{\left(y+z\right)^2}{xyz\left(x+y+z\right)}=0\Rightarrow y+z=0\Rightarrow z=-y\Rightarrow\text{đpcm}\)

\(\text{Vậy ta có điều phải chứng minh }\)

3 tháng 9 2015

Từ x + y + z = a và 1/x + 1/y + 1/z = 1/a

=> 1/x + 1/y + 1/z = 1/ ( x + y + z )

<=>( xy + yz + xz )/xyz = 1/ x + y + z

<=>( xy + yz + xz ) ( x + y + z ) = xyz

Rồi dựa vào đó bạn nhân phá ngoặc và biến phương trình trên về dạng :

( x + y ) ( y + z ) ( z + x ) = 0

=> x = -y => x = a

hoặc y = -z =>x = a

hoặc z = -x => y = a

Nhớ Li - ke nhé !!!

Chúc học tốt !!!

18 tháng 1 2016

đề bài sai, phải là 1/x+1/y+1/z=1/3 chứ

18 tháng 1 2016

em mới học lớp 6 nha

sory

3 tháng 7 2015

x2y - y2x+x2z - z2x +y2z +z2y - 2xyz = 0 

=> xy.(x - y) + xz. (x - z) + zy.(y + z) - xyz - xyz = 0 

=> [xy.(x - y) - xyz] + [xz.(x - z) - xyz] + zy,(y +z) = 0 

=> xy.(x - y - z) + xz.(x - z - y) + zy.(y +z) = 0

<=> (x-y-z). (y+z).x + zy.(y +z) = 0 

<=> (y +z). [x(x - y - z) + zy] = 0 

<=> y + z = 0 hoặc x(x - y - z) + zy = 0 

+) y + z = 0 => y;z đối nhau

+) x(x- y - z) + zy = 0 => x (x - y)  - z.(x - y) = 0  => (x - z)(x - y) = 0 => x = z hoặc x = y

Vậy ....

18 tháng 4 2020

Từ gt, ta có \(\left(xyz\right)^2=\left[x\left(1-x\right)\right]\left[y\left(1-y\right)\right]\left[z\left(1-z\right)\right]\)

Sử dụng BĐT AM-GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta có:

\(x\left(1-x\right)\le\frac{1}{4};y\left(1-y\right)\le\frac{1}{4};z\left(1-z\right)\le\frac{1}{4}\)

Nhân các bđt trên lại theo vế =. \(\left(xyz\right)^2\le\frac{1}{64}\)hay \(xyz\le\frac{1}{8}\)

Gọi A là số lớn nhất trong các số x(1-y);y(1-z); z(1-y)

khi đó từ gt, ta có:

\(3A\ge x\left(1-y\right)+y\left(1-z\right)+z\left(1-x\right)\)

\(=1-xyz-\left(1-x-y-z+xy+yz+zx-xyz\right)\)

\(=1-xyz-\left(1-x\right)\left(1-y\right)\left(1-z\right)\)

\(=1-2xyz\ge\frac{3}{4}\)

từ các đánh giá trên => \(A\ge\frac{1}{4}\)

=> đpcm

16 tháng 8 2015

tu gia thiet =>(x2y-y2x)+(x2z-2xyz+y^2z)-(z2x-z2y)=0

                    <=>xy(x-y)+z(x-y)^2-z^2(x-y)=0

                     <=>(x-y)(xy-zx-zy-z^2)=0

        <=>..... ta dc dpcm